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Abstract 

 

This thesis focuses on the development of new anodes for Li ion batteries. Aluminium 

has been long considered as a promising anode material for Li ion batteries because of its 

low cost, abundance, and low toxicity. Aluminium undergoes alloying with lithium 

through intermetallic LiAl formation which offers a relatively high theoretical capacity of 

993 mAh/g compared to 372 mAh/g for graphite that is currently the principal anode 

material in commercial Li ion batteries. However, despite intensive research, all 

aluminium-based anodes tested so far suffered from rapid capacity fading and failure 

within the first few cycles. Furthermore, there is insufficient understanding of the 

mechanisms of such capacity fading and the lack of ideas how to overcome this problem.  

In this work, we were able to demonstrate that the problems that have been plaguing Al 

anodes are not insurmountable and can be solved by judicious selection of the anode 

materials, their conditioning and treatment, as well as battery design. An important 

difference from all other studies is that we propose and justify the use of an 

electrochemical approach to formation of the LiAl nanostructure directly on the bulk 

anode surface, as opposed to the usual methods tested in the literature that involve 

application of various kinds of nanoparticles, nanowires, as well as thin evaporated or 

sputtered films. Using the approach developed in this work, we were able to fabricate and 

test battery prototypes with Al anodes, LiFePO4 cathodes and solid polymer electrolyte 

that showed sustained performance for more than 400 cycles over a wide range of charge-

discharge rates with high output voltage of 2.6 – 2.8 V and over 90% coulombic 

efficiency without any failure or capacity fading.  

Keywords 

aluminum anode, lithium-ion battery, solid polymer electrolyte, carbon nitride, 
poly(ethylene oxide), electrochemistry 
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Chapter 1 

1 Introduction 

 

1.1 Motivation for this Work  

 

The current global energy economy largely operates based on fossil fuels which presents 

several challenges going into the future. Of particular concern is the ever growing 

demand for non-renewable oil sources, and the impact of greenhouse gas emissions such 

as CO2 on climate change. These factors have increased demand for alternative and 

preferably renewable energy sources including solar, wind, hydroelectric and geo-thermal 

power. These renewable energy sources are largely intermittent in nature because of their 

weather dependence. Furthermore peak electricity demand times during the day may not 

reconcile with peak generation times and vice versa. In urban centers the issue of CO2 

emissions and consequent air pollution may only be solved by replacing internal 

combustion engines with ideally zero-emission vehicles such as electric or hybrid electric 

vehicles. Therefore the goal of an energy-sustainable energy economy that also retains 

the freedom of personal transportation cannot be achieved without tackling the problem 

of energy-storage technology, specifically batteries. This battery technology must be 

rechargeable, efficient, portable and offer high capacity and long cycle life. 

 

Lithium ion batteries (LIBs) have emerged as the dominant form of portable rechargeable 

energy storage technology both for electronics and in the development of electric cars [1]. 

They offer an unmatchable combination of high energy and power density among 

batteries because of certain fundamental advantages over other battery chemistries. 

Firstly, Li has the most negative reduction potential of any element, allowing Li based 

batteries to have the highest possible cell voltage. Also, Li is the third lightest element 

and has one of the smallest ionic radii of any single charged ion. These factors allow Li-

based batteries to have high gravimetric (mAh/g) and volumetric (mAh/cm3) capacity and 

power density. Finally, although multivalent cations such as Pb2+/Pb4+ in lead-acid 
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batteries allow for higher charge capacity per ion, the additional charge significantly 

reduces their mobility. This is an important consideration given that the rate-limiting 

factor for battery performance is typically ionic transport in the solid electrodes. 

 

A conventional Li-ion battery is typically composed of a carbonaceous anode (generally 

graphite), a carbonate-based organic electrolyte with a Li-containing salt (e.g. LiPF6) and 

a Li-containing transition metal oxide cathode (for instance, LiFePO4) [2]. Li ions are 

intercalated and deintercalated between graphite and LiFePO4 through the electrolyte 

during the charge and discharge stages. While LIBs have become the battery of choice 

for many applications they are often also the limiting factor. Specifically LIBs often 

make up a large portion of the mass and volume of portable electronics which limits their 

available energy, and thus requires frequent recharging. Ultimately these limitations and 

the battery performance come down to the electrode materials of the anode and the 

cathode. In the anode chemistry graphite presents several disadvantages [3]. These 

include poor mechanical properties, incompatibility with some common electrolyte 

solvents (e.g. propylene carbonate) and most importantly a poor gravimetric capacity of 

372 mAh/g due to their requiring 6 carbon atoms to contain 1 lithium ion. With the 

demand for safe Li-ion batteries exhibiting high power, large capacity and high rate 

capability ever increasing, intensive research has been carried out worldwide to find 

alternative anode materials to replace the currently used graphite. 

 

In 1971 Dey demonstrated that Li metal can electrochemically alloy with certain other 

metals at room temperature in an organic electrolyte electrochemical cell [4]. Over the 

past few decades these "metal-alloying" electrode materials have comprised a great deal 

of the research into alternative high capacity anodes for LIBs [3,5]. The greatest literature 

focus has been on anodes comprised of silicon (Si), silicon oxide (SiOx), tin (Sn) or tin 

oxides (SnOx). Unlike graphitic materials these anodes undergo lithiation through 

lithium-metal intermetallic alloy phase formation. These metals and metal oxides offer 

high theoretical capacities due to the relatively large stoiochiometric ratio of Li that they 

can commonly accommodate. For example the highest order Si and Sn alloys offer 

theoretical capacities of 3579 mAh/g for Li15Si4 and 960 mAh/g for Li17Sn4. However 
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this advantage of metal-alloying anode materials is offset by two big drawbacks. Firstly 

there are large volumetric expansions during intermetallic phase formation (Li15Si4 = 

676%, Li17Sn4 = 323%) compared to LiC6 formation (~ 6%) in graphite anodes. This can 

cause active materials to crack and fracture, eventually losing complete electrical contact. 

It can also cause significant destruction of the protective solid-electrolyte interphase 

(SEI) layer present on the anode, resulting in continuous electrolyte decomposition, loss 

of lithium availability and increasing cell impedance. The second issue is the poor 

mobility of Li during the alloying and de-alloying processes relative to the 

intercalation/deintercalation processes that occur with Li in graphite anodes. As a result 

these metal-alloying anode materials generally suffer from a large irreversible capacity in 

the first cycle, low rate capability (charge/discharge rate) and limited cycle lifetime. 

 

Development of these metal-alloying anode materials to make them practically feasible 

for LIBs has largely focused on the use of nanoscale architectures [3,5]. Nanostructured 

electrodes such as nanowires, nanoparticles and amorphous thin films can compensate for 

slow electron and Li ion transport typical of alloying materials by decreasing electron and 

Li ion diffusion lengths, enabling higher rate performance and higher capacity utilization. 

Nanoscale dimensions can additionally prevent the build-up of internal stresses during 

the volume expansion and contraction of intermetallic phase formation/dissolution, which 

would otherwise lead to the formation and propagation of cracks within these high-

capacity active materials [6]. Another successful strategy commonly employed in tandem 

with nanostructures is compositing with graphitic materials, using a hierarchical 

arrangement such as encapsulation of the alloying material particles within a carbon shell 

[3]. This approach combines the low volumetric expansion and good conductivity of 

graphitic materials to maintain continuous electrical contact, while still allowing adequate 

void space and short diffusion paths for the alloying material. Even considering these 

promising developments, metal-alloying anodes that demonstrate high mass loading with 

high (> 800 mAh/cm3) volumetric capacity and long cycle life (1000+ cycles) in an 

actual full Li-ion battery cell have yet to be demonstrated at the time of this writing. 
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Since 2001 aluminium (Al) has also emerged as another potential alternative anode to 

graphite in LIBs because of its low cost, abundance, and low toxicity [7-10]. Like Si and 

Sn it undergoes alloying with lithium through intermetallic LiAl formation which offers a 

relatively high theoretical capacity of 993 mAh/g compared to graphite. Higher 

intermetallic phases such as Al2Li3 and Al4Li9 with theoretical capacities of 1490 and 

2234 mAh/g respectively are also known. An additional advantage of Al over Si and Sn 

is the high conductivity of Al. Since it also undergoes lithiation through lithium-metal 

alloying reactivity the development of Al anodes in the literature has also entirely 

focused on the use of nanostructures. However, unlike its Si and Sn counterparts Al 

anodes have generally performed poorly. Multiple studies of just the active 

nanostructured material (nanowires, thin films, etc.) typically reveal rapid capacity loss 

with complete loss of electrical contact, sometimes after just a few cycles [7-10]. 

Attempts to improve the performance of nanostructured Al anodes by compositing with 

carbon through mechanical or gas-phase methods have shown some success over the 

years relative to Al itself [11-13]. More elaborate architectures such as yolk-shell Al 

composited with TiO2 have also recently emerged showing improved capacity and cycle 

life [14]. 

 

The explanation for the continued poor performance of nanostructured Al anodes largely 

remains unresolved and under great debate in the literature. Typically the reason that is 

given is pulverization of active materials during alloying/de-alloying because this process 

has been well documented in Si and Sn anodes over the years [3,5]. Evidence for severe 

cracking and fracture as being the primary failure mechanism for nanowire Al anodes 

was confirmed by in-situ transmission electron microscopy (TEM) [9]. Prior to this 

important study the work of earlier groups made similar assumptions to explain the rapid 

capacity loss they observed in Al [7,8]. However to date other research groups remain 

unconvinced and instead assert that it is the slow Li transport during LiAl phase 

formation and dissolution that is the main culprit for poor performance [15]. This 

phenomenon termed "lithium trapping" results in detectable quantities of lithium 

remaining in the bulk of the Al anode even after prolonged delithiation [15-17]. 

Convoluting all of these discussions further is the role of the oxide (alumina) layer that 
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can be present natively on Al or made thicker synthetically. Some groups assert that the 

oxide layer is largely irrelevant in lithiation-delithiation by merely acting as an ionic 

conducting pathway for lithium and in this regard the thickness does not matter [15]. 

However the same studies that demonstrated pulverization of nanostructured Al anodes 

showed that the oxide can be beneficial because it is lithiated into a mechanically robust 

layer that prevents the onset of anode failure [9]. Overall the common approaches used to 

tackle the issues of metal-alloying anodes have shown limited success with Al anodes, 

suggesting that the advantages conferred by nanostructures do not necessarily carry over 

to this material. As a result Al has been severely underutilized and largely neglected in 

high capacity anode research compared to its Si and Sn counterparts. 

 

1.2 Scope of this Thesis 

 

The continued poor performance of nanostructured Al anodes prepared in traditional way 

suggests that bulk Al metal anodes may be a promising alternative. Bulk Al metal offers 

many advantages relative to nanostructures including ease of preparation, wide 

availability, low cost, minimal environmental impact, good conductivity and mechanical 

robustness. Furthermore, due to its high conductivity, Al is already widely used in Li 

batteries as a material for current collectors. Furthermore, Al is well-known for its ability 

to form nanostructured and very robust coatings upon electrochemical treatment. 

Electrochemical anodizing of Al is known for almost 100 years and is extremely widely 

used in the industry. Therefore, we wanted to investigate if the electrochemical formation 

of the LiAl phase can be also used to nanostructure the surface of bulk Al anodes and 

produce stable and efficient anodes for Li ion batteries. This approach differs 

fundamentally from the usual method of introducing nanosize structures employed in 

battery technology whereby the nanoparticles are prepared separately and then applied to 

the electrode surface with the use of various conducting fillers and binders. In our 

approach presented in this thesis, we grow the nanostructure directly on the surface of 

solid Al anodes without the need of any additional binders or conductive fillers.  
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In order to be able to prepare a mechanically stable intermetallic phase and prevent 

pulverization, the effect of mechanical properties of the bulk Al material on lithiation-

delithiation and intermetallic phase formation must be considered. There are a wide 

variety of commercial methods available to process and manufacture aluminium that can 

include hardening and softening methods or alloying with elements in the molten state. 

Overall these various methods can produce a wide variety of mechanical properties in the 

resulting bulk Al material. The role of the surface oxide in Al anodes is clearly under 

significant debate in the literature, whether it is beneficial, detrimental or largely 

irrelevant towards cycling performance. Therefore this issue also requires investigation. 

The compositing of carbon with nanostructured Al has received limited attention in the 

literature but appears promising. The compositing of nitrogen-doped carbon has been 

utilized with Si and Sn anodes and should prove fruitful with Al anodes but has not yet 

been investigated to our knowledge. In this regard reactive magnetron sputtering offers a 

convenient highly configurable method for compositing nitrogen-doped carbon with bulk 

Al materials. 

 

All of these above effects are first investigated carefully in a liquid half-cell three-

electrode environment, where we can isolate and study coated and uncoated Al anodes to 

determine the reasons why they may perform poorly. The arguments presented by the 

literature are considered to explain our results including pulverization of active materials, 

lithium trapping and a possible detrimental effect from the surface oxide. To demonstrate 

the practical usefulness of our findings these same coated and uncoated Al anodes are 

then tested in an optimized solid-state battery design utilizing a solid polymer electrolyte 

and transition metal oxide cathode under prolonged cycling at a variety of charging-

discharging rates. 

 

Chapter 2 provides a brief overview of the operating principles of a conventional lithium 

ion battery followed by specific details of the electrochemistry involving graphite, Si, Sn 

and Al anodes. Brief details are also provided regarding the cathodic and solid polymer 

electrolyte materials used in this work. The properties of carbon nitride (CNx) prepared 

using reactive magnetron sputtering are examined and a summary of their preparation and 
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the influence of the bonding and structure on the electronic properties is provided. 

Several anode samples in this work were further characterized by time-of-flight 

secondary ion mass spectrometry (TOF-SIMS). Since TOF-SIMS is a more specialized 

surface analysis technique not commonly employed in the literature we also provide 

some background on its application to these materials. 

 

Chapter 3 describes the experimental setup used in this work as well as specific 

parameters involved in anode preparation, CNx deposition, cell assembly, together with 

the electrochemical and surface characterization parameters used in the experiments 

performed in chapter 4. Also included are descriptions of the electrochemical techniques 

and methodology used to characterize anode materials. 

 

In Ch. 4.1 we investigate lithiation-delithiation in a liquid half-cell environment of a 

commercial Al 1100 material from Goodfellow (GF Al) that had been strain-hardened. 

The anode surfaces were prepared with varying degrees of surface oxide remaining. In all 

cases increased oxide content impaired the reversibility of GF Al due to increasing 

diffusion-limited losses in the discharge peak and also produced increased heterogeneity 

in the morphology of the formed LiAl intermetallic phase. Under continuous cycling a 

GF Al anode with the surface oxide removed displayed a relatively stable 

charge/discharge response over time with a few plateau potential jumps and minimal 

change in coulombic efficiency. However surface analysis did reveal systematic large 

scale cracking of the porous morphology.  

 

Ch. 4.2 describes similar half-cell experiments with a different commercial Al 1100 

material from McMaster-Carr (MC Al) that had been softened by thermal annealing 

processing. The electrochemistry revealed evidence of increased volume change 

associated with intermetallic phase formation leading to poorer initial reversibility at all 

current densities investigated relative to GF Al materials. This effect was further 

exacerbated with an MC Al anode that was prepared with the native surface oxide intact. 

In the surface analysis MC Al materials displayed increased heterogeneity and cracking 

of the porous morphology. Under continuous cycling an MC Al anode with the surface 
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oxide remaining exhibited a severely unstable charge/discharge response over time 

relative to GF Al, with numerous plateau potential jumps, significant degradation of 

coulombic efficiency and a heterogeneous multilayer porous structure.  

 

In Ch. 4.3 we perform half-cell testing with a commercial Al 2024 material Duraluminum 

(Dural) that was precipitation hardened by alloying with copper and magnesium. The 

Dural offered improved mechanical toughness relative to GF Al and MC Al leading to a 

more stable charge/discharge response over time and a homogenous intact porous 

structure. However this benefit was strongly counterbalanced by impaired reversibility 

and conductivity at all current densities investigated as well as increased diffusion-

limited losses in the discharge process.  

 

In Ch. 4.4 and 4.5 we characterize the effect of CNx coating on the performance and 

properties of GF Al and Dural anodes, as well as the effect of annealing and varying CNx 

nitrogen content. Various sandwich structures using sputtered Al layer on Al and Cu 

substrates were also investigated. CNx coatings were shown to assist initially in volume 

change containment upon lithiation-delithiation and formation of a stable LiAl 

intermetallic phase; however, the effect was transient and the performance was still 

insufficient. Soft sputtered Al layers showed very poor performance thus highlighting the 

ineffectiveness of using traditional nanostructures for Al anodes.  

 

Ch. 4.6 describes the results of more in-depth studies of several investigated systems 

using time-of-flight secondary ion mass spectrometry (TOF-SIMS). TOF-SIMS turned 

out to be instrumental in revealing the mechanism of formation of nanostructured LiAl 

interphase on the Al surface.  

 

Ch. 4.7 describes the results for a series of coated and uncoated anodes that were 

characterized in an optimized solid-state battery prototype with solid polymer electrolyte. 

With a bare GF Al anode we observed a stable charge/discharge response with 

continuous cycling across a variety of current densities prior to eventual battery failure. 

CNx coatings were shown to be instrumental in cycling to even higher current densities 
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while maintaining good reversibility. Overall, using battery prototypes with solid 

polymer electrolyte allowed us to achieve much better performance than in liquid cells. 

The best prototype was able to withstand more than 400 charge-discharge cycles with 

current densities up to 0.65 mA/cm2 without failure.  

 

Chapter 5 discusses the results obtained in chapter 4. Ch. 5.1 begins with an examination 

of the mechanism during the early stages of lithiation-delithiation and the growth of the 

porous structure at the anode surface. The role of surface oxide is also discussed and it is 

concluded that in both GF Al and MC Al the surface oxide is irreversibly lithiated early 

during the cycling resulting in a significant detrimental impact towards reversibility. 

However, this effect largely becomes insignificant over time with the formation of a 

relatively thick LiAl phase on the surface. Specific attention is then focused on the failure 

mechanisms of pulverization of active materials and lithium trapping within the anode 

bulk during half-cell experiments. Ch. 5.2 discusses how the mechanisms from section 

5.1 are altered in the context of differing mechanical properties of GF Al, MC Al and 

Dural. Here we conclude that the softened mechanical properties of MC Al are 

detrimental towards reversibility and mechanical stability of bulk Al anodes under 

continuous cycling because they produce a more severe strain response in the material in 

regards to the internal stresses generated by lithiation-delithiation. The strain-hardening 

processing of GF Al offers a good compromise of improved mechanical toughness over 

MC Al without introducing inert alloying elements such as Cu in Dural that are 

detrimental both towards reversibility and conductivity. The effect of CNx thin film 

coatings on the lithiation-delithiation of bulk Al anodes is considered in 5.3. Here we 

conclude that the CNx film can provide volume change containment for intermetallic 

phase formation as well as improved conductivity with both effects enhanced by thermal 

annealing of the anode and increased nitrogen content in the film. However these benefits 

cannot be fully realized without the additional scaffolding effect provided by solid 

polymer electrolyte in the solid-state battery design. 
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Chapter 2 

 

2 Background 

 

2.1 Intercalation of Lithium Ions and Lithium-Ion Batteries 

 

A lithium ion battery is typically composed of a carbonaceous anode, a carbonate-based 

organic electrolyte with a Li-containing salt dissolved, and a Li metal oxide cathode. 

Both electrodes are capable of having lithium ions insert into them through intercalation.  

In order to charge the battery, the positive lithium ions move from cathode to anode.  

When discharging, the ions move in reverse. As the positive lithium ions migrate away 

from the anode, the lithium-containing compound is reduced, releasing electrons. The 

electrolyte serves as a reservoir of Li ions for intercalation. Lithium ion batteries are 

considered secondary rechargeable batteries and are distinct from the first generation 

primary lithium batteries which utilize lithium metal as an anode material and are non-

rechargeable.  

 

Traditionally a high-capacity lithium ion battery is made from a lithium cobalt oxide 

(LiCoO2) cathode and a graphite (C) anode [1]. Both electrodes are produced from active 

(Li ion storing) powders mixed with a small content (3–5 wt%) of a polymer binder 

(mostly polyvinylidene fluoride, PVDF) and a small amount (1–5 wt%) of conductive 

carbon additives (mostly carbon black) and casted on both sides of metal current collector 

foils (Al foil for cathode and Cu foil for anode). A typical thickness for the finished 

electrode layer ranges from 60 to 100 µm on each side of a foil. In a battery, the 

electrodes are separated with a porous electrically insulated membrane with a typical 

thickness of 15–25 µm. Organic carbonate solvents are used as a polar aprotic conductive 

pathway for lithium ions between electrodes. A combination of linear and cyclic 

carbonates in the form of 1:1 ethylene carbonate (EC) to dimethyl carbonate (DMC) is 

typically used because it offers an ideal mixture of high ionic conductivity and low 

viscosity for transport of lithium salt ions (LiPF6 or LiClO4). A schematic of a 



www.manaraa.com

12 

 

commercial lithium ion battery involving a carbon anode and a transition metal oxide 

cathode is shown in Fig. 2-1-1 [2], with the processes of deintercalation at the anode and 

intercalation at the cathode. 

 

 

 

Figure 2-1-1: Schematic of a common lithium ion battery with graphite anode and 

LiCoO2 cathode, from ref. 2. 

 

Before we continue it is important to clarify some terminology from the literature. In 

lithium ion batteries the main parameter of interest for electrode material performance is 

typically "capacity" [1]. This term generally refers to specific capacity, gravimetric 

capacity or mass capacity denoting charge per unit mass (mAh/g). This value is often 

cited because it can be calculated easily with reasonable accuracy and is important for 

weight-sensitive applications. The mass in this term is only the mass of active material of 

the particular electrode, not including additional mass for example from binders or 

collector foils. In many applications it is important for an electrode material to show good 

performance at a sufficiently high mass loading. In this case another term is specified, the 
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"volumetric capacity" or charge per unit volume (mAh/cm3) which can be calculated 

from the specific capacity, mass loading and the thickness of the electrode active 

material. Since each electrode undergoes both charge then discharge there are capacities 

associated with both processes, and they may differ significantly. The ratio of the 

capacities for the two processes in a particular cycle is termed the "coulombic efficiency" 

and is expressed in percent. 

 

2.2 Graphite and Metal Anodes in Lithium-Ion Batteries 

 

Historically, the most commercially successful electrode chemistry for lithium ion 

batteries has been intercalation-type electrodes. For the anode this would be various 

graphitic materials. Intercalation electrodes are capable of providing rapid Li ion 

transport by having Li conductive 1D paths or 2D planes within relatively large 

individual particles (commonly > 5 µm diameter in anode particles) [1]. This nature of Li 

insertion and extraction offers the advantage of low-volume expansion on lithiation-

delithiation resulting in good mechanical and electrochemical stability of intercalation 

electrodes.  

 

In graphite anodes the mechanism of Li ion insertion (intercalation) occurs between the 

graphite sheets with 6 carbon atoms containing one Li ion. Based on the common Li ion 

battery shown previously in Fig. 2-1-1 the electrode chemistry can be described in eq. 1, 

where LiMO2 represents a generic transition metal lithium oxide cathode [2]: 

 

yC+LiMO2 ↔ LixCy +Li(1−x)MO2, x ~ 0.5, y= 6   (1) 

 

This process for LiC6 formation offers a minimal volume expansion of approximately 6% 

[3]. The low volume changes in the graphite anode particles are particularly 

advantageous because of the need to maintain a low strain within a solid electrolyte 

interphase (SEI) layer. The SEI layer is formed in the first cycle at both anodic and 

cathodic material surfaces prior to initial Li ion intercalation, and involves irreversible 

partial reduction and decomposition of the electrolyte. Ideally this process is confined to 
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the first charging of the electrode. Otherwise electrolyte solvent-permeable defects may 

form and continuously grow upon electrolyte reduction at a low anode potential, 

irreversibly consuming Li from the cell and reducing its capacity with cycling.  

 

While intercalation anodes such as graphite have been very successful commercially and 

steadily improved throughout the years they still suffer from several disadvantages [1]. 

Firstly the graphitic material has poor mechanical properties; it is brittle and prone to 

breaking easily. Secondly it is susceptible to exfoliation in certain battery solvents such 

as propylene carbonate, which limits the choice of electrolytes. Finally the most 

important limitation of graphite anodes is that the LiC6 formation noted above only offers 

a relatively low theoretical mass capacity of 372 mAh/g [1], due to the requirement of 6 

carbon atoms to contain one Li ion. Since the demand for safe Li-ion batteries exhibiting 

high power, large capacity, and high rate capability is ever increasing, research has been 

carried out worldwide to find new electrode materials to replace the currently used 

materials. By using higher capacity active materials and designing a structure/material 

that reduces the need for a separator membrane, binders, conductive additives, or current 

collectors, the overall battery energy density can be increased.  

 

Various alternatives have been proposed for anodic materials in the form of metals, metal 

oxides, and metal nitrides across the periodic table [1]. These fall into the category of 

either 'alloy-type' or 'conversion-type' active materials and in general can offer much 

higher theoretical capacity than intercalation electrodes such as graphite. The former 

group consists of electrodes capable of electrochemically alloying with lithium, and often 

have high mass capacity due to the relatively large stoichiometric ratio of Li that such 

active materials can commonly accommodate. The most heavily studied 'metal-alloying' 

anode materials have been in group IV, particularly those based on Si and SnO2 [4]. 

 

The electrochemical reactions of lithium with silicon at elevated temperatures follow the 

equilibrium Li-Si binary phase diagram, forming intermetallic compounds such as Li12Si7 

Li7Si3, Li13Si4 and Li22Si5, showing distinct voltage plateaus for each two-phase region 

[4]. However at room temperature charging of a Si anode there are only two phases 
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observed with the final stoichiometry being Li15Si4 and the lithiation proceeding through 

a solid-state amorphization mechanism (Eqs. 2,3). The final alloy Li15Si4 offers an 

impressive theoretical mass capacity of 3579 mAh/g which has been the prime motivator 

in pushing the development of Si anode materials. 

 

During charging of Si anode:  

Si (crystalline) + xLi+ + xe-   -->   LixSi (amorphous) + (3.75 - x) Li+ + (3.75 - x) e-    

-->   Li15Si4 (crystalline)          (2) 

 

During discharge of Si anode: 

Li15Si4 (crystalline) --> Si (amorphous) + yLi+ + ye- + Li15Si4 (residual)  (3) 

 

Electrochemical lithiation of Sn at elevated temperatures proceeds through seven 

different Li-Sn crystallographic phases within the Li-Sn phase diagram: Li2Sn5, LiSn, 

Li7Sn3, Li5Sn2, Li13Sn5, Li7Sn2 and Li17Sn4 [4]. Very early in Sn anode development 

SnO2 was suggested to be a superior alternative material, because of the lithium oxide 

(Li2O) formed "gluing" or holding the Sn grains together [1]. The basic reaction 

mechanism of SnO2-based materials at room temperature is shown in eq. 4 with the first 

step involving reduction of the oxide [4]. 

 

SnO2 + 4Li+ + 4e- --> Sn + 2Li2O + 4.25Li+ + 4.25e- --> Li4.25Sn + 2Li2O  (4) 

 

The final form of Li4.25Sn is equivalent to Li17Sn4 and results in a theoretical mass 

capacity of 960 mAh/g. This is significantly lower than the theoretical maximum of 3579 

mAh/g for Si. However Sn is still considered an attractive anode material due to its 

volumetric capacity of about 2000 mAh/cm3 which is comparable to Si. 

 

While Si and SnO2 anodic materials may offer very high theoretical mass or volumetric 

capacities they suffer from severe irreversible capacity loss during the discharge of the 

first cycle. This behaviour is due to the extreme volumetric expansions of 676% and 

323% for the highest order Li15Si4 and Li17Sn4 alloys respectively relative to the 
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unlithiated materials [3]. This results in severe mechanical degradation in the form of 

cracking and pulverization of active materials eventually causing complete loss of 

electrical contact. Therefore for the development of Si and Sn based materials the 

literature focus has been on nanostructured anodes [4]. Nanostructured electrodes such as 

powders and nanowires can compensate for slow electron and Li ion transport in the 

active material by decreasing electron and Li ion diffusion length. Most importantly they 

offer large surface areas to accommodate the necessary extreme volume changes. These 

architectures can be further improved by compositing the active material with a relatively 

inactive material. The most common choice here are various carbon-based composites 

with graphite, carbon nanotubes, amorphous carbon or graphene. The low volumetric 

expansion of carbon offers a buffering component against cracking and pulverization of 

the metal-alloying active material. Additionally the carbon content improves conductivity 

through continuous electrical contact between Si or Sn particles while preventing their 

aggregation in the nanoscale architecture. Overall the dramatically improved performance 

and stability at nanoscale dimensions is a key feature of Si and Sn anodic materials for 

lithium-ion batteries. 
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2.3 Background of Aluminum Anodes 

 

2.3.1 Structure and Properties of Aluminum 

 

Aluminum in its elemental state is a silvery-white, soft, non-magnetic, ductile metal. Its 

key features include very low density and excellent corrosion resistance due to rapid 

formation of a passive native oxide layer (Al2O3) with thickness of a few nanometers. 

Aluminum adopts a face-centered cubic crystal structure shown in Fig. 2-3-1. Pure bulk 

Al metal has relatively poor mechanical properties which can be improved through a 

variety of processing methods. Typically this processing involves a variety of cold-

working methods such as strain-hardening to increase material hardness [5-6]. The strain-

hardening method multiplies the number of dislocations compared to the initial unworked 

bulk Al material and entangles them through dislocation-dislocation interactions. This 

effectively results in plastic deformation being relatively more difficult to perform than 

the initial unworked bulk material. Alternatively a range of thermal annealing methods 

can be used to create the opposite effect [7]. The thermal annealing treatment annihilates 

a significant portion of the dislocations present originally. However the dislocations that 

remain have higher mobility and the processed material has coarser grain boundaries. 

This effectively results in a softer material with plastic deformation being relatively 

easier to perform than the unworked material. Overall there are a plethora of processing 

techniques available and thus commercial bulk Al materials can possess a wide variety of 

mechanical properties.  

 

Another way to improve the mechanical properties of Al and also mitigate the issue of its 

high reactivity in the elemental state is to alloy Al with other metals. The most common 

alloying elements employed are typically copper, zinc, magnesium, manganese and 

silicon. Another class of alloys that has become important particularly in the aerospace 

industry is lithium-aluminum alloys, due to the weight advantage provided by the 

extremely low density of lithium. In general each 1 wt% of lithium results in a density 

reduction of 3% in the resulting alloy relative to aluminum itself. This lighter density is 
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made possible through the substitution of Al atoms by Li atoms in the FCC lattice. 

Therefore lithium-aluminum alloys may be considered as substitutional alloys as opposed 

to interstitial alloys such as lithium-silicon where lithium occupies the interstitial 

vacancies in the lattice. Shown in Table 2-3-1 are some relevant properties of aluminum 

as well as lithium for comparison. 

 

 

 

 

Figure 2-3-1: Face-centered cubic crystal structure of Al 

 

 

Element Al Li 

Density (g/cm3) 2.70 0.535 

Melting Point (oC) 660.32 180.54 

Atomic Radius, empirical (pm) 125 145 

Crystal Structure  FCC BCC 

Lattice Parameter (pm) 404.95 351.25 

Space Group Fm_3m lm_3m 

 

Table 2-3-1: Properties of elemental aluminum and lithium 
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2.3.2 Properties of Lithium-Aluminum Intermetallics 

 

Historically alloys between lithium and metals including aluminum were produced 

thermally by heating them together at high temperatures beyond the melting point [8]. 

Then in 1971 Dey showed that electrochemical alloying of metallic lithium with various 

metal electrodes can occur spontaneously with high coulombic efficiency at room 

temperature, in organic carbonate electrolytes containing lithium salts [9]. The alloying 

was observed in several materials including Sn and Al with the resulting intermetallic 

phase crystal structures and stoichiometry being consistent with alloys produced 

thermally. Another important result was the absence of alloying in other materials such as 

stainless steel and most importantly Cu. Therefore these latter unreactive materials would 

eventually become the common current collector materials in both primary and secondary 

lithium batteries. Since Dey's important study aluminum has been extensively studied as 

a possible anode to replace metallic lithium in primary lithium batteries due to its low 

cost, wide availability, high conductivity, mechanical stability and low environmental 

impact [3].  

 

Shown in Fig. 2-3-2 is the Al-Li binary phase diagram with the crystal structure data of 

the intermetallic phases summarized in Table 2-3-2 [10]. The term 'L' denotes the liquid 

phase near the melting point of aluminum at 660 oC.  



www.manaraa.com

20 

 

 

 

Figure 2-3-2: Binary Al-Li Phase Diagram, from ref. 10. 

 

 

 

 

Table 2-3-2: Al-Li crystal structure data, from ref. 10. 

 

 



www.manaraa.com

21 

 

Overall there are three possible lithium-aluminum alloys of LiAl, Al2Li3 and Al4Li9 

denoted as α/β, γ and σ respectively in the diagram. To illustrate the electrochemical 

alloying behaviour of Al-Li at room temperature, Fig. 2-3-3 shows a plot of the lithium 

electrochemical potential (in eV) versus the mole fraction of lithium in the 

lithium/aluminum system [11]. Overlaid near the top of the graph are charge and 

discharge curves for formation and dissolution of intermetallic phases on an Al foil 

electrode from an organic carbonate electrolyte with a lithium salt. From this figure we 

observe that the higher order Al2Li3 and Al4Li9 phases (γ and σ) are absent near room 

temperature. Therefore the LiAl phase remains and may actually comprise two different 

phases, α or β depending on the lithium concentration within the Al host. There is 

actually a relatively wide concentration range between 5% and 45% mole fraction of 

lithium where both α and β LiAl phases exist together at room temperature, near the 

equilibrium potential of 0.38V versus lithium metal electrode.  

 

 

 

Figure 2-3-3: Electrochemical potential of Li as a function of mole fraction in Li/Al, 

from ref. 11. 
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According to Table 2-3-2 the α and β LiAl phases have their own distinct lattice 

parameters [10]. The α phase at low concentration can be considered as a 'substitutional 

solid solution' of lithium in a face-centered cubic Al lattice with structure similar to Fig. 

2-3-1 (a = 0.405 nm), and diffusion of solute Li atoms occurring through the movement 

of dislocations [12]. Supersaturation of the α phase results in the β phase which has a 

NaTl-type crystal structure (a = 0.637 nm) shown in Fig. 2-3-4 with space group Fd3m 

[13]. This Zintl phase structure can be considered as a diamond-like lattice of Al (blue 

spheres) with Li (black spheres) occupying the vacancies in the lattice. The increase in 

lattice parameter here for β-LiAl is directly responsible for the volumetric expansion of 

Al upon lithiation. The electrochemical interconversion between α and β LiAl phases at 

room temperature described in this section will be important in describing the mechanism 

of lithiation-delithiation for Al anodes in lithium-ion (secondary) batteries. 

 

 

 

Figure 2-3-4: Atomic arrangement of a NaTl-type crystal structure for ββββ-LiAl 

intermetallic phase 
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2.3.3 Electrochemistry of Aluminum Anodes in  

Lithium-Ion Batteries 

With the continued investigation of aluminum anodes for lithium (primary) batteries 

interest eventually grew for using this material to replace carbon in lithium ion 

(secondary) batteries. Based on the stoichiometry and the low atomic weight of Al the 

LiAl, Al2Li3 and Al4Li9 alloys offer theoretical mass capacities of 993, 1490 and 2234 

mAh/g respectively. Therefore the maximum theoretical lithium uptake for an aluminum 

electrode is 2.25 Li atoms per Al atom. This value is below the 4.25 or 3.75 Li atoms for 

each Sn or Si atom possible in the highest order Li17Sn4 and Li15Si4 alloys at room 

temperature [4]. However as described in Ch. 2.2 both Sn and Si intermetallic alloy 

formation suffer from severe volumetric expansions of 676% and 323% respectively for 

the highest order alloys which causes rapid irreversible capacity loss as anode materials 

[3]. Studies of Al anodes in lithium ion batteries over the past 15 years have revealed that 

only the lowest order (LiAl) alloy phase is formed during lithiation-delithiation in aprotic 

polar carbonate solvents at room temperature [14-24]. This is consistent with the absence 

of higher order lithium-aluminum alloys at room temperature in primary lithium batteries 

discussed in Ch. 2.3.2. The structural determination of the intermetallic phase in Al 

anodes is typically made after galvanic cycling through X-ray diffraction (XRD).  

 

While this lowest order intermetallic alloy only allows for an uptake of one Li atom per 

Al atom it still offers a good theoretical mass capacity of 993 mAh/g compared to the 

value of 372 mAh/g for graphite. Furthermore the volumetric expansion for LiAl alloy 

formation is only 97% [3], which is considerably less than for the higher order Si and Sn 

based alloys described above. The formation and dissolution of LiAl is a single alloy 

transition unlike the stepwise pathway for formation of higher order Si intermetallic 

alloys. Therefore the charge-discharge curves for Al anodes are characterized by wide 

and flat charge/discharge plateaus. This is an important requirement for steady power 

output of anodic materials in lithium ion batteries. 
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Recently the mechanism of lithiation in Al anodes has been investigated both in 

crystalline bulk materials and semi-crystalline nanostructures. For bulk Al materials Liu 

et al. have studied the mechanism of lithiation in thin Al foil, shown in Fig. 2-3-5 [25]. 

This figure is only a schematic representation of the processes and certain details such as 

solid-electrolyte interphase (SEI) formation and volume changes of the Al host material 

have been omitted. First the lithium ions arrive at the electrode surface (panel a). 

Lithiation of Al then proceeds through an initial nucleation of an α-LiAl solid solution in 

the electrode surface (panels b,c). This process is accompanied by a lattice contraction in 

the Al host through rearrangement of domains. As the Li concentration in the Al matrix 

increases towards supersaturation a crystalline phase of β-LiAl begins to nucleate and 

grow within the solid solution of α-LiAl (panel d). This process is accompanied by a 

lattice expansion in the Al host. Therefore a two-phase equilibrium between α and β 

phases of LiAl is established, leading to the lithiation potential plateau. As lithiation 

continues additional Li will diffuse into the bulk of the anode as a progressively deeper 

front of α-LiAl, while additional α-LiAl crystallizes into β-LiAl closer to the anode 

surface (panel e inset). This electrochemical lithiation of Al through a solid-solution 

mediated pathway leading to crystallization is fundamentally different from the 

amorphization pathway described previously for other metal-alloying anode materials 

such as Si and SnO2 [4]. Physically the creation and movement of these LiAl phases is 

based on the mobility of dislocations within the Al host. Huang et al. revealed that initial 

nucleation of intermetallic phases in metal-alloying anodes occurs at surface sites with 

high density of mobile dislocations [26]. The accompanying lattice contractions and 

expansions of lithiation proceed through movement of these dislocations, creating a 

dislocation-induced stress (DIS) that is localized to the surface of the material during 

initial lithiation [27]. As lithiation continues (time increases) and the diffusion front 

moves deeper these dislocations will progressively move towards the interior of the 

anode bulk. As a result the DIS will decrease at the surface and increase in the bulk, 

eventually reaching a steady state.  
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Figure 2-3-5: Schematic of lithiation mechanism in a crystalline thin Al foil anode, 

from ref. 25. 

 

A common choice for nanostructured anode materials is thin semi-crystalline films 

prepared on hard substrates through electron-beam deposition or thermal evaporation. 

Recently Leenheer et al. utilized in-situ transmission electron microscopy (TEM) to 

investigate the mechanism of lithiation in a 50 nm Al thin film prepared through electron-

beam deposition on silicon nitride substrate [28]. Initially there were isolated nucleation 

events at the anode surface involving formation of α-LiAl solid solution, followed by 

crystallized growth into the β-LiAl phase. However continued nucleation and growth of 

intermetallic phases did not proceed through a surface-to-interior lithiation front 

mechanism described above for bulk Al materials (Fig. 2-3-5). Beyond the initial 

nucleation and growth events the continued formation of intermetallic phase instead 

propagated laterally across the anode surface. Additional nucleation events were only 

observed to occur at the boundary between lithiated and unlithiated material rather than 

continuing at previously isolated unreactive regions. The propagation of the lateral  

lithiation fronts was highly non-uniform with different sub-regions of the anode lithiating 

at very different rates. In contrast in-situ TEM of thin Si anodes in the same study 

revealed lithiation fronts that spread uniformly across the anode surface. The difference 
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in lithiation behavior between these two materials was again ascribed to the phase growth 

dependence in Al anodes on crystallization into β-LiAl. In comparison lithiation of Si 

occurs through a solid-state amorphization mechanism as described previously in Ch. 2.2. 

A comparative schematic of the surface-to-interior lithiation front mechanism versus that 

of lateral lithiation front propagation for bulk versus thin film Al anodes is shown in Fig. 

2-3-6. 

 

 

Figure 2-3-6: Schematic of lithiation mechanisms and lithiated phase front 

progression (a) Surface-to-interior lithiated phase front progression characteristic 

of bulk Al anodes, (b) Lateral phase front propagation characteristic of 

nanostructured thin film Al anodes. Lines denote grain boundaries and half-circles 

denote nucleation points, from ref. 28. 

 

 

Like Si and Sn based materials the focus on nanostructures has entirely driven the 

development to improve the performance of Al anodes because it is also a metal-alloying 

anode, and the volumetric expansion of 97% for LiAl formation is still relatively large 

compared to the small value of 6% for LiC6 formation in graphite anodes [3]. Therefore it 

is assumed that Al nanostructured anodes such as amorphous thin films, powders and 

nanowires will offer the same advantages relative to bulk Al anodes described previously 

for Si and Sn nanostructures, particularly in the accommodation of volume changes. 
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However in the literature nanostructured Al anodes have consistently shown high 

capacity initially with rapid capacity loss observed after a few cycles [14-24]. 

 

Currently there is significant debate in the literature concerning the dominant capacity 

loss mechanisms responsible for the continuing poor performance of Al nanostructured 

anodes. Firstly the volumetric expansion and contraction of intermetallic alloy formation 

and dissolution can impair stability of the solid-electrolyte interphase (SEI) layer present 

on the anode surface [29]. The SEI layer is formed initially from partial irreversible 

reduction and decomposition of the electrolyte. In graphitic anodic materials the 

volumetric expansion for lithiation is low at around 6% [3], resulting in minimal growth 

or change of the SEI layer beyond the first cycle. In Al like in other metal-alloying 

anodes such as Si the much larger volume changes can partially destroy the SEI layer 

present upon delithiation [29]. With continued expansion and contraction of cycling this 

will expose fresh Al material for continuous formation of thick SEI layers, causing 

significant permanent loss of lithium from the electrolyte. Secondly there is the 

pulverization of the active LiAl material [14, 19], which is considered by many to be the 

dominant failure mechanism in Al nanostructures because it is consistently observed in 

Li-Si and Li-Sn intermetallic alloy active materials. The progression of pulverization in 

Al anodes has been intensely studied through in-situ TEM of Al nanowires (NW) during 

repeated lithiation-delithiation cycles, shown in the series of images in Fig. 2-3-7 [19]. 

Fig. (a) shows a schematic illustration of the in-situ experimental setup. Fig (b) shows a 

pristine Al NW with diameter of 40 nm contacted with the Li2O/Li electrode to form an 

electrochemical device. Fig. (c) then shows the Al NW after the first lithiation with 

volume expansion observed in both radial and longitudinal directions. Progressing to the 

first delithiation stage (d) voids are formed indicated by red and yellow arrows. 

Continued delithiation in (e) enlarges these voids and forms new ones, indicated in blue 

arrows. After the second lithiation (f) the voids shrink and are partially healed. Switching 

back to the second delithiation in (g) increases the number and size of the voids. These 

trends continue until the NW is finally pulverized into nanoparticles (l, m), causing 

complete loss of electrical contact within the LiAl active material as well as to the 

supporting substrate. 
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Figure 2-3-7: Pulverization of a single aluminum NW upon electrochemical cycling, 

from ref. 19. 
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Another body of literature has emerged claiming that the dominant capacity loss 

mechanism is instead "lithium trapping", due to diffusion-limited Li transport in Al [24]. 

Like in Si anodes Al suffers from poor mass transport kinetics associated with the 

breaking and forming of chemical bonds upon electrochemical alloying of Li with Al. As 

described previously lithiation-delithiation of Al occurs through a mechanism of two 

LiAl phases (α and β) based on the lithium concentration available within the host 

matrix. The reported diffusion coefficients of Li within α-LiAl and β-LiAl phases vary 

significantly but are around 10-11 cm2/s and 10-9 cm2/s respectively [24]. These values are 

relatively slow compared to the diffusion coefficient of 10-7 cm2/s for Li in LiC6 in a 

graphite anode [1]. Practically speaking, the impaired Li transport in LiAl would limit the 

discharge rate and thus the power density. Three decades ago Owen et al. proposed a 

model to explain lithium trapping shown in Fig. 2-3-8 in terms of the charge and 

discharge processes [11]. For simplicity the volumetric changes of alloy formation and 

dissolution have not been included in the figure. Additionally it is assumed that the 

surface oxide layer plays no part in lithiation-delithiation and therefore merely acts as an 

ion conducting pathway to the Al core. The graphs in the bottom half show the Li 

concentration versus distance into the anode. 

 

Figure 2-3-8: Owen's model for lithium trapping in charge/discharge processes of Al 

anodes, from ref. 11. 
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Initially the α-LiAl phase nucleates on the Al surface. As lithiation continues the α-LiAl 

phase will progress into the Al bulk, while near the electrode surface the increasing Li 

concentration will convert α-LiAl phase to β-LiAl. Upon applying the opposite current 

delithiation (oxidation) will begin from the LiAl/alumina interface, regenerating the Al 

from its surface and then progressing inwards. Therefore the recovery of lithium back 

into the electrolyte first happens at the electrode surface. Due to the differing diffusion 

coefficients of the two phases this gives rise to a lithium-rich β−LiAl layer trapped 

between two lithium deficient α-LiAl layers. Additionally the lithium that is now trapped 

can diffuse towards the surface or deeper into the Al bulk. Experimentally the 

phenomenon of lithium trapping has been shown by observing lithium present in Al 

electrodes even after the de-alloying step [25]. Considering diffusion is time dependent 

this capacity loss mechanism can become progressively worse with additional cycling. 

However recent evidence shows that it may be possible to circumvent this issue by 

minimizing the time during which the Al electrode is maintained at oxidizing potentials, 

because it allows less time for the trapped lithium to diffuse further into the Al bulk [24]. 

This is performed experimentally by cycling the Al electrode to a lower anodic 

(oxidizing) potential limit during delithiation. 

 

Finally for Al anodes there is the point of contention regarding the influence of surface 

alumina layer on cycling performance and failure mechanisms. In other active electrode 

materials for lithium ion batteries such as LiCoO2, LiMn2O4 and MoO3 it is widely 

reported that the presence of an alumina layer can improve the durability and rate 

capability of the electrode during lithiation/delithiation [30-33]. However the underlying 

mechanisms of the alumina layer on these materials and Al anodes are well not 

understood in the literature. In Sn-based systems the surface oxide (SnO2) present 

natively on the anode is typically reduced first at a potential considerably higher before 

lithiation begins [4]. For Al anodes some studies assert that the oxide merely acts as an 

inert ion conducting pathway for lithium towards the Al core [24], as demonstrated above 

in the Owen's model. These studies show that changing the alumina thickness does not 

noticeably affect the electrochemical performance. Other studies show that the alumina is 

first irreversibly lithiated into a super-hard Li-O-Al layer [19], similar to lithiation of 
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SiO2 that occurs in Si anodes [34]. This process occurs first prior to lithiation of the Al 

core. The resulting Li-O-Al layer has poor electrical conductivity compared to the 

original alumina layer, and is therefore considered a source of permanent capacity loss. 

However the Li-O-Al layer acts to contain the pulverization of electroactive materials, by 

enlarging through elastic and plastic deformation to act as a solid electrolyte with 

exceptional mechanical robustness and ion conduction. Shown in Fig. 2-3-9 are in-situ 

TEM images and EELS maps of a pristine Al nanowire anode with a native 4 nm oxide 

layer that was lithiated into a thicker 5 nm Li-O-Al layer [19]. 

 

 

Figure 2-3-9: Evolution of the surface Al2O3 layer to the Li-O-Al layer. (a) Pristine 

Al nanowire with 4 nm native Al2O3 layer, (b) Lithiation of the surface layer, whose 

thickness was increased to 5 nm, (c) The Al nanowire with the lithiated surface 

layer, (d-f) EELS maps of Li, Al, O respectively, indicating that the surface Al2O3 

layer had evolved to Li-O-Al after lithiation, from ref. 19. 

 

 

The continuing poor performance for lithiation-delithiation of Al nanostructured anodes 

suggests that the alternative of bulk Al anodes may be preferable. Bulk Al materials offer 

advantages of ease of preparation, mechanical robustness and improved conductivity over 

nanostructures. For this purpose it is important to consider the processing methods used 
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to manufacture commercial bulk aluminum. As described in Ch. 2.3.1 there are a wide 

variety of processing techniques available to modify the mechanical properties of bulk Al 

metal through mechanical, thermal or alloying methods. Therefore commercial bulk Al 

metal can offer a wide variety of mechanical properties. 

 

As described previously the mechanism of lithiation-delithiation in metal-alloying anode 

materials such as Al depends on the density and mobility of dislocations within the host 

[25-27]. One would expect the processing methods on bulk Al materials will determine 

the arrangement and mobility of dislocations within the host [5-7], which will affect the 

relative ease of plastic deformation of the resulting LiAl alloy. Therefore one should 

expect that the resulting mechanical properties of bulk Al materials should influence 

these various lattice contractions and expansions for nucleation and growth of 

intermetallic phases. As an anode in lithium-ion batteries these properties will in turn 

affect the material's response to the volume changes of lithiation-delithiation, and 

ultimately electrode degradation and failure [35]. Additionally these mechanical 

properties should affect the properties of any surface oxide present on the Al material. 

The influence of mechanical properties and the surface oxide of Al materials on 

lithiation-delithiation, specifically capacity loss mechanisms such as solid-electrolyte 

interphase (SEI) formation, surface oxide lithiation/reduction, pulverization of active 

materials and mass transport limitations of Li in the bulk material (lithium trapping) are 

key issues that will be investigated in this thesis work beginning in Ch. 4.1. 
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2.4 Cathode Materials 

The cathode of a battery is the positive electrode which gains electrons from the external 

circuit and is reduced during the electrochemical reaction. The cathode materials in a 

rechargeable lithium ion battery must meet several crucial requirements to be 

successfully used [36]. In particular the material should contain a readily 

reducible/oxidizable element; for example, a transition metal such as Fe; the material 

should react with lithium ions in a reversible manner, very rapidly both on insertion and 

removal, and have these processes occur at high positive potentials. A lithium ion cell 

should be assembled in the discharge state. Therefore, the cathode must act as a source of 

lithium which requires the use of air-stable lithiated intercalation compounds to facilitate 

the cell assembly. The properties of an ideal cathode material for lithium-ion batteries 

include readily reversible reactions, little bonding and structural modification during the 

charge-discharge process [37].  

The common cathode material choice for lithium-ion batteries are intercalation-type 

compounds, specifically lithiated transition metal oxides. An intercalation compound 

interacts with cations and electrons from external sources, forming a new compound in 

which the structural elements of the initial compound are maintained. Lithium ions act as 

guest species that can be inserted in the host lattice during discharge and extracted from 

the host with little structural modification [38]. 

Recently, transition metal phosphates such as olivine LiFePO4 and other lithium 

transition-metal phosphates, have been demonstrated as possible candidates for cathode 

materials [39]. The most common cathode materials are summarized in Table 2-4-1 [40]. 
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Table 2-4-1: Electrochemical parameters of several cathode materials, from ref. 40. 

 

Olivine LiFePO4 in particular is an attractive cathode material that will be used in the 

battery prototypes of this thesis work because of its low cost, ease of preparation and 

perceived thermodynamic and kinetic stability. The crystal structure of olivine LiFePO4 

is shown in Fig. 2-4-2 [41]. 

 

 

Figure 2-4-2: The crystal structure of olivine LiFePO4, from ref. 41. 
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2.5 Solid Polymer Electrolytes 

 

Conventional Li-ion batteries use liquid electrolytes containing a lithium salt such as 

LiPF6 or LiClO4  dissolved in a mixture of organic alkyl carbonate solvents that are liquid 

at room temperature, like ethylene (EC), dimethyl (DMC), diethyl (DEC) and 

ethylmethyl (EMC) carbonate to yield high ionic and electronic conductivity. These 

solvents are high vapor pressure, toxic, and flammable liquids that require expensive and 

heavy stainless steel hermetic seals to prevent leakage. These requirements add to the 

packaging cost and lower the energy density (volumetric capacity, mAh/cm3) of the 

battery, as well as limiting the design of thin flexible shapes and sizes. Furthermore, 

many of these organic solvents have undesirable high reactivity towards electrodes, such 

as propylene carbonate towards graphite anodes [42]. 

 

Solid polymer electrolytes have emerged as an alternative to liquid electrolytes, offering 

high ionic conductivity, wide electrochemical window, and high stability at both 

electrodes. Solid polymer electrolytes (SPEs) are formed by incorporating lithium salts 

into polymer matrices and casting them into thin films. There are several possible 

advantages with the solid polymer electrolyte compared to conventional liquid ones [43]. 

Most importantly the SPE can function as a mechanically rigid separator in a cell, 

isolating the negative and positive electrodes from each other and preventing the cathode 

reaction products from diffusing to the anode side to create a short circuit. Additionally it 

solves the issue of electrolyte leakage, while at the same time enabling the battery to have 

high energy density, easy processability, good cycle life and flexible geometry. 

Compared to liquid electrolytes, solid polymer electrolytes show lower ionic 

conductivities and lower lithium-ion transport numbers (<0.3), but they are less reactive 

towards electrodes [44-45].   

 

Over the past two decades, poly(ethylene oxide) (PEO) has emerged as the major 

polymer host matrix used in SPEs for Li-ion batteries. PEO features a high dielectric 

constant, strong lithium ion solvating ability and a glass transition temperature well 

below zero (around -60°C), [46-50]. Solid polymer electrolytes solely consisting of PEO 
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and a lithium salt generally have poor ionic conductivity (>10-4 S/cm) at the near ambient 

operating temperatures desired for Li-ion battery applications, primarily due to the high 

degree of crystallinity in PEO (60-70%). The conduction of PEO-based solid polymer 

electrolytes occurs through lithium ion hopping along the polymer chain assisted by the 

ether oxygen, and typically this process takes place in the amorphous region along with 

the long range segmental motion of the polymer chains [51-52]. 

 

Therefore in PEO-based SPEs the design goal is to suppress the PEO crystallinity in 

order to maximize the mobile phase for ion conduction. One strategy involves blending 

high molecular weight PEO with polymers having a high glass transition temperature, 

such as polystyrene [53], poly(methyl methacrylates [54] and poly(vinyl acetate) [55]. 

This combines the mechanical strength from one component and the conductivity from 

the other component. The second approach, that will be instead employed in the battery 

tests of this thesis work, is through the addition of ceramic nanoparticles such as TiO2, 

SiO2 and Al2O3. These nanoparticles impede the PEO recrystallization process, as well as 

to provide specific conducting pathway along PEO-ceramic interface and stabilize the 

lithium interface more efficiently. Furthermore these nanoparticles can compensate for 

and even improve the mechanical strength of solid polymer electrolyte lost due to a 

decrease in the degree of crystallization [45, 50, 56-60]. Therefore these ceramic fillers 

can allow for a solid polymer electrolyte that offers high ionic conductivity, while at the 

same time being mechanically rigid to suppress and control the intermetallic LiAl phase 

growth at the anode during battery tests. 
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2.6 Carbon Nitride (CNx)  

 

The two most common allotropes of carbon are diamond and graphite. Amorphous 

carbon may contain various proportions of either of these forms. On one end is 

"diamond-like" tetrahedral amorphous carbon (ta-C) which consists of 80-85% sp3 

bonding. The presence of sp2 sites in ta-C introduces π- π* states which decreases the 

band gap relative to diamond but still remains as an insulating material. In contrast to ta-

C is "graphitic" amorphous carbon (a-C) which consists of 95% sp2 bonding. In this sp2-

rich material the presence of sp3 sites breaks up the graphitic network resulting in 

disordered graphitic islands 15 to 20 Å in diameter. This creates a band gap unlike 

graphite itself resulting in semi-metallic conductivity [61]. Nitrogen can be incorporated 

into sp2 hybridized amorphous carbon (a-C) to create amorphous carbon nitride thin films 

(a-CNx). The addition of a small amount of nitrogen into these materials can further 

increase the electronic conductivity through the introduction of more π and π* states. 

Significant nitrogen content allows for cross-linking which further breaks up the graphitic 

network. This creates a more open structure with superior mechanical properties and 

increased band gap relative to amorphous graphite. Therefore these materials are 

converted from a highly conductive semi-metal (a-C) to a semiconductor material (a-

CNx) due to structural modification [62]. A schematic of a-CNx structure is shown in 

Fig. 2-6-1 [63]. 
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Figure 2-6-1: Proposed structure of nitrogen-doped amorphous carbon (a-CNx) 

combines sp
2
 and sp

3
 carbon atoms.  From ref. 63.  

 

The deposition of carbon nitrides can be realized using a variety of deposition techniques 

resulting in a wide number of different possible sp3, sp2 and sp bonding configurations in 

these materials, shown in Fig. 2-6-2 [64-66]. The numbers in red indicate the number of 

valence electrons within the occupied levels, with the notation "N π" denoting occupied 

or un-occupied non-bonding levels localized on the nitrogen. Overall these bonding 

arrangements can be described as n-type doping, insulating or intrinsic semiconducting. 

The first two bonding modes (a) and (b) are diamond-like and therefore insulating, with 

the extra electron in the π* of (b) allowing for n-type doping. Bonding modes (c), (e) and 

(f) are pyridinic, pyrrolic and olefinic respectively and will be intrinsic semiconductors 

relative to graphite even though they have more π- π* states. Bonding modes (d) and (g) 

involves substitution of graphitic carbons by nitrogen, with the extra electron in π* 

resulting in an n-type semiconductor relative to graphite. Finally the nitrile bonding mode 

(g) has a shorter bond length than C=N resulting in a relatively insulating band gap 

compared to modes (c) to (g). In general nitrogen incorporation into ta-C to create ta-

CNx will have bonding modes predominantly (a) and (b), while a-CNx created from 

amorphous graphite will consist primarily of bonding modes (c) to (h). 
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Figure 2-6-2: Different possible bonding arrangements in carbon nitride and their 

relative band gaps. Numbers in red indicate number of electrons in occupied levels. 

The letter "N" denotes occupied or unoccupied non-bonding levels localized on the 

nitrogen. Red arrows indicate n-type doping configurations. Modified from ref. 66. 

 

2.6.1 Carbon Nitride Thin Film Deposition  

  

For the amorphous carbon nitride coatings in this work we want good electrical 

conductivity as well as good ionic conductivity through favourable Li ion penetration to 

the metal-film interface. Therefore we want to target the graphitic carbon nitride coatings 

rich in sp2 functional groups (a-CNx) as opposed to the insulating properties of the 

diamond-like tetrahedral carbon nitride coatings (ta-CNx). A variety of deposition 

methods are available to prepare amorphous carbon nitride coatings. In general high-

energy methods such as vacuum cathodic arc deposition favor the formation of insulating 

ta-CNx over a-CNx [67]. Direct current (DC) and radio frequency (RF) magnetron 

sputtering (MS) are two well developed low-energy deposition techniques that offer a 

wide variety of amorphous sp2-rich CNx thin film materials [67]. Magnetron sputtering is 

a physical vapor deposition technique in which momentum transfer of positively charged 

ions ejects matter from a target material towards a substrate where deposition occurs. Fig. 

2-6-3 shows the sputter deposition of a graphite target using an Ar gas source. The 

graphite target is held at a negative bias (typically hundreds of volts) relative to the 
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substrate and vacuum chamber, which are grounded. Argon gas is introduced into the 

vacuum chamber leading to a fraction of argon atoms being positively ionized, and 

forming a plasma in the presence of the strong electric field between the target and 

substrate. Due to the large negative target bias, positively charged ions are accelerated 

towards the target, collide with it, and eject some of the material by ion bombardment. 

The resulting collision ejects carbon upwards by momentum transfer towards the 

substrate where it is deposited to create a thin film. A magnetron placed behind the target 

focuses the charged plasma near the target surface, increasing ion bombardment and 

sputter deposition rate. Use of nitrogen as a second component of the plasma allows for 

reaction of ionized nitrogen species in the plasma with the carbon material ejected from 

the target to generate carbon nitride thin films. Magnetron sputtering through both RF 

and DC power supplies allows for high throughput production of conductors and 

semiconductors. Overall this makes it a very attractive technique for developing carbon 

nitride thin film materials with tunable electrochemical properties based on a wide variety 

of deposition parameters. For preparation of CNx thin film in this thesis work we have 

utilized a custom-build RFMS deposition system shown in Fig. 2-6-4. 

 

 

 

 

Figure 2-6-3: Schematic of the magnetron sputtering process 
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Figure 2-6-4: Custom-built vacuum system for radiofrequency magnetron 

sputtering deposition of CNx films. 

 

 

The structure and bonding of vacuum sputtered carbon nitride prepared through RFMS 

are highly dependent upon the plasma composition which can be controlled through a 

variety of tunable deposition parameters including deposition power, target bias, nitrogen 

partial pressure, target to substrate separation, substrate temperature or bias and total 

plasma (chamber) pressure [68]. In practice the three deposition parameters that are 

typically varied are deposition power, total chamber pressure and the nitrogen partial 

pressure. 
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Increasing the deposition power in DCMS and RFMS results in increased kinetic energy 

for bombarding species. This increases the mean free path decreasing the number of 

collisions for reactivity in forming CN containing species in the plasma. Additionally the 

high kinetic energy of bombarding species at the growing film surface decreases nitrogen 

content in the film, through preferential chemical re-sputtering of nitrogen. There is a 

linear dependence of film thickness on the magnetron power [69]. Based on these effects 

a higher deposition power in general will create a CNx film with increased thickness, 

lower nitrogen content, higher conductivity and increased intrinsic film stress through 

increased film disorder. In practice high power films deposited at 100 W in DCMS are 

well known for rapid delamination in solution. Furthermore this problem is exacerbated 

when the film is prepared at high nitrogen contents (over 50% N2 in plasma) [70]. 

 

Increasing the total deposition pressures such as 3-5 Pa increases the nitrogen content in 

the film through an increased likelihood of nitrogen reacting with carbon at the target as 

well as decreasing the mean free path of the ejected CN species from the target [68]. The 

decreased kinetic energy of incident species will promote further reaction before impact, 

and limit the chemical re-sputtering of nitrogen in the film. Freshly deposited amorphous 

carbon nitride films are highly disordered and possess a significant intrinsic stress. This 

stress arises from a combination of tensile stress from the deposition technique and 

nitrogen incorporation as well as compressive stress from gaseous moisture and oxygen 

inclusions in the film [71]. A high deposition pressure will increase the formation of 

more chain-terminating C≡N (nitrile) bonds in order to relieve the elevated internal film 

stress [72]. The resulting CNx film will be less dense and therefore more disordered, 

which may negatively impact the film adhesion in solution.  

 

Incorporation of nitrogen into amorphous carbon thin films modifies the film structure 

and bonding, leading to changes in the π and π* states as well as their distribution [73]. 

At low nitrogen partial pressures below 5% there is mostly olefinic and graphitic 

substitution by nitrogen, leading to the introduction of more π and π* states and an 

increase in conductivity. Increased nitrogen partial pressure in the plasma increases the 

pyrdinic and pyrrolic bonding as well as the formation of more C≡N terminating groups. 
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This further nitrogen incorporation significantly alters the properties of CNx films 

deposited through RFMS. Firstly there is increased film thickness causing both increased 

tensile and compressive stress [74]. Secondly the formation of more nitrile groups leads 

to decreased film density and increased porosity through the reduction of connectivity for 

the amorphous carbon network. This structural modification is similar to that described 

earlier for elevated deposition pressures [72]. Overall as the nitrogen content in the film 

is further increased there is a transition from the semi-metallic conductivity of graphite to 

the semiconducting behavior of nitrogen rich carbon nitride [75]. 

 

Over time, CNx films deposited through RFMS undergo further structural and 

morphological modification through film relaxation [74]. This process can be accelerated 

through post-deposition thermal annealing to change film properties and bonding 

configurations [76]. At temperatures up to 200 oC the stress relief predominantly arises 

from the combination of decreased nitrile content and the conversion of N-C sp3 to N=C 

sp2 bonding. At higher annealing temperatures above 200 oC there is a dissociation of 

N=Csp2 bonding and recombination of C=Csp2 bonding together with further reduced 

nitrile content, leading to continued film relaxation.  

 

In this thesis work we were interested in relatively thick CNx films with strong adhesion 

to the substrate that would not degrade early in our electrochemical tests. As described 

previously CNx film deposited at high magnetron powers of 100 to 150 W rapidly 

delaminate in solution. However a relatively low magnetron power of 25 W would likely 

require an excessively long deposition time to produce a CNx film of adequate thickness 

for our electrochemical tests. This could lead to overheating of the vacuum pumping 

system leading to shortened equipment lifetime. Therefore a compromise of 50 W was 

chosen for the magnetron power. Increasing the total deposition pressure allows for 

increased nitrogen content in the film, but at a cost of increased disorder which may 

negatively impact the film adhesion in solution. Therefore a total deposition pressure of 1 

Pa was selected. We were interested in films with significant nitrogen content since these 

films were expected to possess a more open structure favourable for Li ion penetration 

due to increased pyridinic and nitrile functional groups [77]. They should also possess 
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superior mechanical properties (hardness) due to increased cross-linking [62]. From 

preliminary tests prior to this thesis work we determined that a nitrogen partial pressure 

of 75% in the plasma offered metal-CNx materials with good film stability in solution as 

well as reversibility of lithiation-delithiation at relatively high current densities. For 

comparison metal-CNx materials with a lower nitrogen plasma content of 25% are also 

investigated in Ch. 4.4 and 4.7. Thermal annealing of metal-CNx materials at relatively 

mild temperatures of 150 to 300 oC may offer improved film stability as well as adhesion 

through increased reactivity of the deposited CN species with the substrate. The resulting 

effect on reversibility of lithiation-delithiation relative to non-annealed materials in both 

liquid half-cell and solid-state battery electrochemical experiments is investigated in Ch. 

4.4, 4.5 and 4.7. 
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2.7 Time-Of-Flight Secondary Ion Mass Spectrometry  

(TOF-SIMS) 

 

Time of flight secondary-ion mass spectrometry (TOF-SIMS) involves the bombardment 

of a solid or liquid surface using pulses of energetic primary ions from an ion gun [78]. 

Sample surfaces must be stable under UHV conditions ~ 10-6 to 10-9 bar. The resulting 

high-energy collision cascade causes an ejection of a large number of sputtered 

(secondary) particles. These are predominantly electrons; neutral species, atoms, and 

molecules; with a small fraction consisting of secondary atomic and cluster ions. 

Therefore secondary ion mass spectrometry is the measurement of mass to charge ratio of 

these secondary ions emitted by primary ion bombardment. 

 

Primary ion sources come in three types: 1) ions of gaseous elements (Ar+, Xe+, O2
+, etc.) 

generated with duoplasmatrons or electron ionization, 2) surface ionization source to 

generate Cs+ through vaporization and ionization in a porous tungsten plug, and 3) liquid-

metal-ion guns (LMIG). In LMIG, tungsten tips are wetted by metals or metal alloys such 

as gallium and bismuth. Application of a high voltage produces an intense electrical field 

at the tip resulting in evaporation of positive primary ions [79]. These can then be 

focused by a series of optics into a primary ion beam with spot sizes ~ 100 nm to 1 µm. 

LMIG also possess the advantage that they can be pulsed with very narrow pulse width ~ 

10 ns. This pulse can then be compressed into a smaller pulse width using a bunching 

unit before it is allowed to strike the sample surface. Such procedures also apply to 

generating polyatomic ions such as Bi3
+ [80-81] and Au3

+ [82]. A mass filter is applied to 

the primary ion stream to separate polyatomic particles from the atomic ones. 

 

Samples are treated as a grid using a well-defined raster pattern depending on the number 

of pixels desired and the raster scan area (e.g. 128 x 128 pixels in a 128 x 128 µm2 area). 

Therefore each pixel of the raster receives a single pulse of primary ions, generating a 

complete mass spectrum. Due to the parallel detection nature of TOF analyzers, the entire 
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mass spectrum can be simultaneously acquired at one secondary ion polarity (positive or 

negative). The m/z ratio of secondary ions is based on measuring the time required for 

emitted ions to reach the detector inside the flight tube of the spectrometer.  

 

As described above, the primary ion gun is operated in short pulses (pulse width ~ 10 ns) 

resulting in a complete mass spectrum for each pixel. As the primary ions strike the 

sample surface a low-energy electron “floodgun” (10 to 1000 eV) is used to neutralize the 

resulting sample charging. This electron gun can be pulsed such that the electrons 

irradiate the sample surface between pulses of primary ions. Secondary ions emitted by 

this primary ion pulse bombardment are then post accelerated (extracted) by a fixed 

voltage into the TOF tube. This accelerates all secondary ions to a common potential 

energy and therefore approximately the same kinetic energy upon entering the TOF tube. 

The kinetic energy will be proportional to the velocity squared, with velocity inversely 

proportional to the time of flight. Assuming singly charged ions (z=1) the resulting m/z 

ratio of a secondary ion will therefore be directly proportional to the time of flight 

squared.  Ions of lighter mass will reach the detector in shorter time than heavier ions. 

The reflectron positioned after the flight tube serves to provide energy focusing for ions 

of the same mass leaving the flight tube by means of a retarding electric field. This 

reduction in kinetic energy spread enhances mass resolution. Modern TOF analyzers 

typically achieve high mass resolution of M/∆M > 10000, allowing the possibility to 

distinguish between several ions at the same nominal mass [83]. Secondary ions are 

detected as they impact a multi-channel plate (MCP) at the end of the flight tube. Fig. 2-

7-1 shows the schematics of a TOF-SIMS instrument 

 

The general SIMS Equation for any emitted species is shown in Equation 5 [84].  

 

Im
 = Ip*Ym*αm*fm*Cm

   (5) 

 

where Im is the secondary ion current of species m (positive or negative), Ip is the primary 

ion pulsed current, Ym is the sputter yield, αm is the ionization probability, fm is the 

instrumental transmission factor and Cm is the fractional concentration of species m in 
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the surface. Sputter yield deals with the total number of sputtered particles of species m 

for each incident ion. The ionization probability is the chance that a sputtered species m 

will become ionized as it leaves the surface. For practical purposes the secondary ion 

yield is of more use. It is defined as the number of secondary ions detected per projectile 

impact.  

 

 

Figure 2-7-1: Schematic of a TOF-SIMS instrument. 

 

 

The sputter yield of secondary particles will depend on the size of the collision cascade 

induced by primary ion bombardment. This cascade is directly dependent on primary ion 

mass, energy, angle of incidence and sample characteristics. Sputtering of materials is a 

damaging process involving the removal of elements, structural fragments and molecular 

species. Every molecule that is impacted will be destroyed. This will occur whether the 

entire molecule is desorbed or only a small piece such as a carbon or hydrocarbon 

fragment is removed. Ionization of sputtered particles is different for molecular (parent-

like) ions compared to fragment ions although the emission process for both is highly 

collisional. Characteristic large molecular ions can be formed by Bronsted acid-base 
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(proton transfer) reactions as well as various cationization and anionization mechanisms. 

Ionization of fragment particles is thought to be largely induced by collisions, either 

directly with the primary particle or with fast recoil atoms near the impact site [85]. 

Ionization mechanisms to form secondary ions are strongly influenced by electron 

exchange processes between the departing species and the surface. As a result the 

electronic state of the surface is of critical importance for ion yields. This “matrix effect” 

can be clearly seen by secondary ion emission from a pure metal compared to that of the 

metal oxide. The former will yield primarily positive elemental and cluster ions while the 

latter will yield negative metal oxide (MemOn) cluster ions. This is due to the negative 

charge of oxygen in the lattice, which will cause predominantly negative secondary ion 

emission if it is a major component of the cluster [86].  

 

TOF-SIMS is an inherently destructive form of analysis because it requires consumption 

of the sample material [83]. Emission of secondary ions due to primary ion bombardment 

requires the creation of a disturbed or perturbed region of "damage" on the sample 

surface [87]. An incoming primary ion may strike an unaffected area or it may strike one 

of these damaged areas. In "static" SIMS the probability is very low (P<<1) that 

secondary ion emission will occur from these pre-bombarded (damaged) areas. Therefore 

when the surface is probed by the primary ion beam, all of the atoms or molecules of the 

surface are likely in their original condition because all prior probing events are too far 

away to affect them. The total number of primary ions that strike the surface is 

considered the primary ion dose (PID) and will be dependent on the operational 

parameters of the primary ion source. On a per unit area basis this is defined as the 

primary ion dose density (PIDD). The static limit is defined as the highest PIDD that can 

be used for obtaining molecular information without significantly damaging the surface 

[88]. Primary ion impact events are remote from each other such that the analyzed 

surface resembles its original pristine state. Experimentally this means that at the static 

limit there must be no more than a 10% drop in the initial intensity of the ion fragment 

being analyzed, with higher static limits for fragments with lower mass.  
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The goal of static SIMS is to maximize the secondary ion yields of important analyte 

signals while using the lowest possible primary ion beam current. These yields are 

dependent on 1) the composition, bonding and surface properties of sample material, 2) 

the composition, mass and ionization probability of a particular secondary ion, and 3) the 

primary ion parameters such as mass, kinetic energy and angle of incidence. The 

optimization of these yields has been the driving force for development of cluster primary 

ion sources such as SF5
+, Bi3

+, Aun
+ and C60

+ [89]. With increased primary ion mass the 

ion penetration and energy transfer during the collision cascade will become increasingly 

more shallow. Fragmentation of the cluster upon impact will result in multiple 

cooperative low-energy cascades localized at the sample surface. This "soft-ionization" 

source will therefore predominantly enhance the ion yields of higher mass species critical 

to SIMS analysis of both organic and inorganic samples. However it will also  increase 

the yield of fragment ions because the cluster inevitably induces more surface disruption. 

 

 

2.6.1 Dual-beam depth profiling 

 

SIMS analysis beyond the static limit is known as dynamic SIMS. This high primary ion 

dose method is used to obtain depth profiles of secondary ions that may be characteristic 

of surface, bulk and interfacial layers [89]. Cluster primary ions such as Bi3
+ mostly 

deposit their kinetic energy at a shallow depth resulting in high surface sensitivity and 

enhancement of high mass secondary ion yields.  However this means that the resulting 

sputtering rate (sample erosion in terms of depth) is very slow. Therefore it is beneficial 

to employ an additional low energy monoatomic primary ion source as a "sputter" or 

"etching" beam. This dual-beam depth profiling mode allows for the combined benefits 

of enhanced higher mass secondary ion yields from the cluster primary ion "analysis" 

beam, and enhanced sputtering rate of the material studied from the atomic primary ion 

"sputter" beam [90]. In this mode the low-energy sputter beam is initially pulsed at a 

large area of the sample. This is followed by a pulse of the high-energy analysis cluster 

beam at a smaller sub-section of the area created by the sputter beam. Only the secondary 

ions generated by the analysis cluster beam are collected at the detector. These alternating 
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pulses of analysis and sputter beams are continued until the desired layer of the sample is 

reached. 

 

The choice of sputtering and analysis beams  has significant effects on the resulting depth 

profiles. They can exacerbate matrix effects at the surface of a sample, amplify back-

reflection effects due to projectile-deposited energy at hard substrate/organic interfaces, 

cause varying degrees of sample damage, mixing of layers and changes in secondary ion 

signals. In this work we wished to focus on negative polarity secondary ions to see 

characteristic nitrogen and oxygen containing species, because such ions with 

electronegative atoms typically appear in the negative spectrum. Analysis of these 

negative species would allow us to characterize carbon nitride (CNx) layers, oxides, 

electrolyte, interfaces, etc. Therefore we chose Cs+ as a low-energy sputtering source and 

cluster Bi3
+ as the high-energy analysis source [91-93].  The use of a Bi3

+ cluster ion 

analysis beam minimizes sample damage leading to high intensities of characteristic high 

mass fragments. This benefit is crucial for characterizing the carbon nitride thin films 

employed in this work. Higher mass Cx
-, CxN

-, CxNy
- fragments should arise solely from 

this nitrogen-substituted graphitic polymer, as opposed to simpler fragments such as C2
- 

and CN- which significantly overlap with atmospheric surface contamination species in 

the TOF-SIMS chamber. The use of Cs+ as the sputter source increases negative 

secondary ion yield due to Cs+ implantation into the surface resulting in a change of the 

work function of the surface under investigation [93].  

 

Recently TOF-SIMS depth profiling has been applied to study electrode processes at Si 

anodes during lithiation/delithiation [29] such as composition of the SEI layer, and 

lithiation/reduction of the surface oxide layer. These are parasitic processes that may 

influence anode efficiency, degradation and failure. In addition to tracking lithium, TOF-

SIMS allows one to visualize the distribution of representative metal, oxide and 

electrolyte species at the surface as well as throughout the bulk of the cycled material. 

For Al this technique has so far been restricted to this metal's role as a positive electrode 

current collector with a passivated surface, not as an electroactive anode material in a 

lithium ion battery [94-96]. Additionally those studies with Al did not utilize depth 
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profiling or cluster primary ions in the sample analysis and were restricted to the positive 

ion mode. To date there have only been a few TOF-SIMS studies of carbon nitride thin 

films prepared through magnetron sputtering [97-99]. However these studies either did 

not perform depth profiling, or simply ignored the behaviour of higher mass CN 

fragments. Furthermore the CNx materials investigated were not utilized in any form of 

charge storage. 
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Chapter 3 

 

3  Materials and Methods 

 

3.1 Materials 

 

Aluminum 1100 alloy foil was obtained from two sources: Goodfellow, 99%, half-hard, 

0.3 mm thickness and McMaster-Carr, 99%, soft, 0.5 mm thickness. Aluminum 2024 

alloy (Dural) foil was obtained from McMaster-Carr: 93% Al, heat-treated, 0.5 mm 

thickness. Copper foil was obtained from Goodfellow: 99.9%, half-hard, 0.3 mm 

thickness. All substrates were cut into discs of 14 mm diameter before any further 

preparation. Silver (99.9%, 0.5 mm dia., half-hard) and platinum (99.95%, 0.5 mm dia., 

annealed) wires for lithium half-cells were obtained from Alfa-Aesar. Carbon (graphite) 

target (99.999%, 2 in. dia., 0.125 in. thick) for magnetron sputtering was obtained from 

Goodfellow. LiFePO4 nanoparticles (97%, <5 um dia.), LiPF6 (99.99%, battery grade), 

polyvinylidene fluoride (avg. MW 275000) and polyethylene oxide (avg. MW 4 million) 

were obtained from Aldrich. "Super P" conductive carbon black (99%) was obtained 

from Alfa Aesar. TiO2 nanoparticles (99%, 15 nm dia.) were obtained from 

"Nanostructured and Amorphous Materials" (Los Alamos, New Mexico, USA). 

Propylene carbonate (99.7%, anhydrous) and 1-methyl-2-pyrrolidinone (99.5%) were 

obtained from Aldrich. Acetonitrile, potassium hydroxide, hydrochloric acid and ethanol 

were obtained from Caledon. Ultra-pure argon and nitrogen gases for radiofrequency 

magnetron sputtering deposition were obtained from Praxair. All materials were used 

without further purification with the exception of polyethylene oxide, which was first 

dried at 50 oC under vacuum for 4 hours. 
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3.2 Aluminum Alloy Material Properties 

 

We investigated the influence of mechanical properties of aluminum on the cycling 

performance of bulk aluminum anodes in Li-ion batteries, using three different 

commercially available aluminum materials. These materials are considered "wrought" 

alloys. Therefore they are initially cast as ingots and then rolled into sheets prior to any 

additional processing. 

 

Firstly, the McMaster-Carr aluminum is considered an 1100 alloy, with 99% Al content 

and the remainder primarily as Fe + Si impurities. It is a "soft-annealed" alloy with a 

temper designation of "dead soft, O". For this processing method the aluminum is 

thermally annealed at 450-550 oC and then cooled after being rolled into sheets. 

Considering that the melting point of pure Al is 660 oC at 1 bar (standard conditions) this 

processing creates a softer material afterwards with coarser grain boundaries. The end 

result is that plastic deformation is relatively easier to perform compared to the initial 

unworked 1100 alloy sheet. Secondly, the Goodfellow aluminum is also considered an 

1100 alloy with similar composition. It is a "strain-hardened" alloy with a temper 

designation of "half-hard, H14". "Half-hard" is a degree of cold-working ranging from 

"quarter hard" to "fully hard". This strain hardening processing method entangles the 

dislocations that were present initially in the aluminum. The end result is that plastic 

deformation is relatively more difficult to perform compared to the initial unworked 1100 

alloy sheet. Finally, the Dural is considered a 2024 alloy, with 93% Al content, 4-5% Cu, 

1-2% Mg and the remainder an assortment of impurities. It is a "heat-treated" alloy with a 

temper designation "T3". The aluminum is melted initially and mixed with alloying 

elements in the molten state. The mixture is quenched, cold-worked and finally naturally 

aged to a stabilized state. The copper content primarily precipitates at the grain 

boundaries during this process, considered as "precipitation hardening". The end result is 

that plastic deformation is significantly more difficult compared to any 1100 alloy 

material. 
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Additionally in Ch. 4.5 a copper substrate (Goodfellow) with 99.9% Cu content and half-

hard temper was utilized for deposition of composite anode samples. 

 

3.3 Anode Sample Properties and Electrochemical 

Characterization Summary  

 

A variety of anode samples were prepared on aluminum, Dural and copper substrates and 

characterized electrochemically either in liquid 3-electrode half cells or in a prototype 

solid-state 2-electrode battery cell. The various sample properties and electrochemical 

characterizations are summarized in Tables 3-3-1 to 3-3-7 below, along with the 

respective sub-chapters of chapter 4 where the results may be found. The remainder of 

this chapter will describe all details of sample preparation and characterization according 

to this labeling scheme. 

 

 

Table 3-3-1: Goodfellow Al (GF Al) anodes and their testing procedure in liquid 

half-cells in Ch. 4.1. 

Sample Code GF1 GF2 GF3 GF4 GF5 

Substrate GF Al GF Al GF Al GF Al GF Al 

Polishing yes yes yes no yes 

Etching yes no yes no yes 

Drying vac. des. 

RT 

vac. des. 

RT 

moist oven  

90 oC 

vac. des. 

RT 

vac. des.  

RT 

Experiment 4x8 4x8 4x8 4x8 Failure 

CV Vertices (V) 0.35, 2.2 0.22, 2.1 0.21, 2.1 0.25, 2.1 - 

Galvanic Cycle 

Upper/Lower 

Pot. Limits (V) 

2.77  

-0.43 

2.62 

-0.58 

2.61 

 -0.59 

2.65  

-0.55 

2.64 

-1.36 
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Table 3-3-2: McMaster-Carr Al (MC Al) anodes and their testing procedure in 

liquid half-cells in Ch. 4.2. 

 

 

Table 3-3-3: Duraluminum (Dural) anodes and their testing procedure for liquid 

half-cells in Ch. 4.3. 

 

 

 

 

 

 

Sample Code MC1 MC2 MC3 

Substrate MC Al MC Al MC Al 

Polishing yes no no 

Etching yes no no 

Drying vac. des. RT vac. des. RT vac. des. RT 

Experiment 4x8 4x8 Failure 

CV Vertices (V) 0.24, 2.1 0.23, 2.1 - 

Galvanic Cycle 

Upper/Lower Potential Limits (V) 

2.64, -0.56 2.63, -0.57 2.67, -1.33 

Sample Code DU1 DU2 

Substrate Dural Dural 

Polishing yes yes 

Etching yes yes 

Drying vac. des. RT vac. des. RT 

Experiment 4x8 Failure 

CV Vertices (V) 0.13, 2.2 - 

Galvanic Cycle Upper/Lower  

Potential Limits (V) 

2.73, -0.47 2.68, -1.32 
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Table 3-3-4: Al-CNx and Dural-CNx anodes and their testing procedure for liquid 

half-cells in Ch. 4.4 

Sample Code AC1 AC2 AC3 DC1 DC3 DC2 DC4 

Substrate GF Al GF Al GF Al Dural Dural Dural Dural 

CNx N2 plasma (%) 75 75 75 75 75 25 25 

CNx Thickness (nm) 75  75  75  75  75  75  75  

Annealing no 2 hours  

150 oC 

no no no no no 

Experiment 4x8 4x8 Failure 4x8 Failure 4x8 Failure 

CV Vertices (V) 0.14 

1.5 

0.14 

1.5 

- 0.13 

2.2 

- 0.11 

2.2 

- 

Galvanic Cycle 

Upper/Lower 

Potential Limits (V) 

2.54 

-0.26 

3.1 

-0.2 

2.55 

-1.45 

2.73 

-0.47 

2.76 

-1.24 

2.71 

-0.49 

2.52 

-1.48 

 

Table 3-3-5: Composite anodes with Goodfellow Al (GF Al) substrate and their 

testing procedure for liquid half-cells in Ch. 4.5. 

Sample Code ACM2 ACM3 ACM1 

Substrate GF Al GF Al GF Al 

Al thickness (nm) 25 25 25 

CNx N2 plasma (%) 75 75 - 

CNx Thickness (nm) 75 75 - 

Annealing no 2 h 150 oC no 

Experiment 4x8 4x8 4x8 

CV Vertices (V) 0.19 

2.1 

0.13 

2.0 

0.28 

2.2 

Galvanic Cycle Upper/Lower 

Potential Limits (V) 

2.59 

-0.21 

2.53 

-0.37 

2.68 

-0.32 
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Table 3-3-6: Composite anodes with copper substrate and their testing procedure 

for liquid half-cells in Ch. 4.5. 

Sample Code CM1 CM2 CM3 CM4 

Substrate Cu Cu Cu Cu 

First CNx N2  plasma (%) - - 75 75 

First CNx Thickness (nm) - - 75 25 

Al thickness (nm) 25 25 25 75 

Second CNx N2  plasma (%) 75 75 75 75 

Second CNx Thickness (nm) 75 75 75 50 

Annealing no 2 h 150 oC no no 

Experiment 4x8 4x8 4x8 4x8 

CV Vertices (V) 0.15 

2.1 

0.16 

2.1 

0.26 

2.2 

0.22 

2.3 

Galvanic Cycle Upper/Lower 

Potential Limits (V) 

3.05 

-0.25 

3.06 

-0.24 

3.16 

-0.14 

3.32 

-0.68 
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Table 3-3-7: Battery anodes with Goodfellow Al (GF Al) substrate and their testing 

procedure for battery prototypes in Ch. 4.7. 

Sample Code BAT1 BAT2 BAT3 BAT4 BAT5 BAT6 

Substrate GF Al GF Al GF Al GF Al GF Al GF Al 

CNx layer - 75% N2 

75 nm 

75% N2 

75 nm 

25% N2 

75 nm 

75% N2 

75 nm 

75% N2 

75 nm 

Annealing no no 2 h 300 oC no no no 

Cyc. @  

0.016 mA/cm2 

- - - - 8 8 

Cyc. @  

0.033 mA/cm2 

8 8 8 8 8 - 

 Cyc. @  

0.065 mA/cm2 

100 200 200 200 100 - 

Cyc. @  

0.13 mA/cm2 

100 200 200 200 100 - 

Cyc. @  

0.32 mA/cm2 

400 200 200 200 50 - 

Cyc. @  

0.46 mA/cm2 

- - - - 50 - 

 Cyc. @  

0.59 mA/cm2 

- - - - 50 - 

 Cyc. @  

0.65 mA/cm2 

- - - - 50 - 

 

3.4 Aluminum and Copper Substrate Preparation 

Electrodes were first polished by hand with coarse (1200) grit sandpaper, fine (4000 grit) 

sandpaper and finally rotary polishing. Aluminum 1100 electrodes were sonicated in 

detergent + milliQ water, etched in 1 M potassium hydroxide solution and sonicated in 

ethanol for 15 minutes each. For Dural and copper electrodes the potassium hydroxide 
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etching step was replaced by 1 M hydrochloric acid for 15 minutes. The substrates were 

dried using argon gas and placed under vacuum in a desiccator  before further use.  

 

For chapters 4.1 and 4.2 both types of aluminum 1100 alloy were also prepared with 

varying degrees of surface oxide remaining, to investigate its effect on electrochemical 

performance. Specifically in Ch. 4.1 sample GF1 was polished, etched and then dried in a 

desiccator under vacuum, while sample GF2 had the etching step omitted. Sample GF3 

was polished, etched, wet with water and then dried in an oven under air at 90 oC. Finally 

sample GF4 had both polishing and etching steps omitted. These preparations for Ch. 4.1 

materials were summarized previously in Table 3.1. For Ch. 4.2 sample MC1 was 

polished, etched and then dried in a desiccator under vacuum, while sample MC2 had 

both polishing and etching steps omitted. 

 

All other substrates prepared in this work, starting from chapter 4.3 onwards were 

prepared with the surface oxide removed through both polishing and etching steps 

followed by drying under vacuum in a desiccator to minimize oxide regrowth. 

 

3.5 Vacuum deposition of carbon nitride 

 

Aluminum, copper or Dural substrates were placed in a stainless steel holder with 0.3mm 

deep circular grooves. A mask plate with 10.7 mm holes was screwed into place on top of 

the holder. This holder was loaded into a nitrogen-filled glovebox. Through a load-lock 

system the substrate holder is then introduced into a custom built vacuum deposition 

system used for radiofrequency magnetron sputtering of carbonaceous materials as well 

as aluminum. In this work the target to substrate distance was 7 cm. The substrate 

temperature was not controlled and it is known that the substrate temperature would not 

be expected to exceed 100oC for the deposition powers used in this work. Depending on 

the plasma composition the target was negatively biased at 100 to 200V. Ultrahigh purity 

argon and nitrogen gas were used as gas sources. A 5 cm diameter carbon target was used 

as a carbon source. The total chamber pressure for all CNx depositions was 7.5 mTorr (1 
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Pa) with a magnetron power of 50 W. The partial pressure of nitrogen was varied by 

adjusting the rates of mass flow of nitrogen gas and argon gas as expressed in equation 1: 

 

 

 

The flow rate, measured in standard cubic centimeters per minute, was controlled using a 

mass flow controller (MKS Type 1179A). In this thesis work plasma compositions of 

75% or 25% N2 were used for the CNx layers. Initially the chamber was pumped down to 

a base pressure of 1*10-6 Torr through a combination of rotary and turbomolecular pump. 

Then a high pressure (3 Pa) 50% N2 plasma was used to clean (pre-sputter) the chamber 

and carbon graphite target of contaminants for 15 minutes. During this cleaning 

procedure the substrate holder was blocked by a rotating mask plate. After turning off the 

plasma and gas flows the chamber was once again pumped down to a base pressure 

below 1*10-6 Torr. Finally the mask plate was rotated away above the carbon target to 

expose the substrate after the plasma parameters were set for deposition. To achieve the 

desired thickness of CNx layers, the deposition rates for 25% and 75% N2 plasmas were 

2.78 and 3.75 nm/min respectively. Deposition of thin aluminum films was performed 

similarly, using a 2.5 cm diameter aluminum target as the aluminum source. In this case 

deposition was performed in a pure Ar plasma at a magnetron power of 50 W, total 

pressure of 15 mTorr (2 Pa) and a deposition rate of 5 nm/min. 

 

3.6 Post-Deposition Thermal Annealing of Vacuum 

Sputtered Materials 

 

Certain vacuum sputtered materials were annealed using a custom-built oven with 

independent control of the temperature above and below the substrate to allow uniform 

heating. The oven was located inside a nitrogen-filled glovebox that was directly attached 

to the vacuum deposition system to ensure samples were not exposed to the atmosphere 

prior or during annealing. The films were annealed at 150 oC for 2 hours, removed from 
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the oven and allowed to cool to room temperature in the glovebox for several hours. 

Alternatively, for high temperature annealing the material was instead annealed using a 

quartz-tube oven under nitrogen gas at 300 oC for 2 hours. 

 

3.7 Lithium Half-Cell Assembly and Testing 

 

Three-electrode lithium half-cells were assembled in glass cells in an argon-filled 

glovebox with < 1 ppm H2O and O2 content. The cells consisted of a working electrode 

(anode sample), platinum wire counter electrode and silver wire pseudo-reference 

electrode. A Teflon gasket with 5 mm inner diameter was placed over the working 

electrode, resulting in an exposed area of  0.196 cm2. The purpose of this gasket was to 

allow for surface analysis of uncycled material after cycling of the exposed area was 

complete. The electrolyte solution was 0.1M LiPF6 in propylene carbonate with a volume 

of 10 mL. To improve stability and consistency, between measurements the silver 

reference electrode was stored in a solution of supporting electrolyte of the same 

concentration as during measurements. All potentials were measured with respect to this 

reference electrode. This reference potential was controlled after each experiment via the 

ferrocene/ferrocinium redox couple and was re-calculated vs. a Li+/Li electrode, as is 

common practice in this field. All quoted potentials in this work are therefore relative to 

Li+/Li. Cyclic voltammetry and galvanostatic cycling were performed on the cells at 

room temperature with a PAR 273A potentiostat/galvanostat and Corrware software.  

 

Two types of electrochemistry experiments were performed in half-cells. In the first type 

of experiment the working electrode was initially charged potentiodynamically to a 

potential of +1.5V or +2V vs. Li+/Li. This was followed by a cyclic voltammogram from 

the right vertex potential to the left vertex potential and back to the right vertex potential 

at a scan rate of 1 mV/s for 3 scans. Afterwards, galvanic cycling was performed at four 

different current densities of 0.13, 0.25, 0.5 and 1 mA/cm2 for 8 cycles each. These 

experiments will henceforth be referred to as "4x8" experiments. Alternatively, "failure" 

experiments were performed by cycling immediately at a higher current density of 0.5 
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mA/cm2 for a varied number of cycles, without initial conditioning from a cyclic 

voltammogram. This experiment was designed to monitor the anode degradation over 

time, and to the test the practical applicability of continuous operation over hundreds of 

cycles. Vertex potentials for CVs and upper/lower potential limits for galvanic cycles can 

be found in Tables 3-3-1 to 3-3-7 described previously. For both types of half-cell 

experiments charge and discharge steps were set at a maximum of 1000 seconds each.  

 

After electrochemical measurements all anodes were removed from the cell and 

immediately rinsed with acetonitrile to remove excess LiPF6 and propylene carbonate. 

Samples were then stored in a desiccator under vacuum until surface analysis was 

performed. In all cases the cycling data was analyzed using Corrview software to 

determine potentials of charge and discharge plateaus, and then fitted to determine the 

coulombic efficiencies of both the main discharge plateaus and diffusion-limited 

portions. 

 

3.8 Cathode Preparation 

 

For anode samples in chapter 4.7 tested in a two-electrode battery coin cell prototype, a 

complementary cathode material was prepared outside the glovebox under ambient 

conditions based on the literature procedure [1]:  

 

6 wt. % polyvinylidene fluoride (PVDF) binder was dissolved in N-methyl-2-

pyrrolidinone (NMP). 85 wt.% active material (LiFePO4) and 5 wt. % "super P" 

conductive carbon black were ground and mixed together in a mortar and pestle, followed 

by mixing in a vortex apparatus for 10 min. The dissolved NMP-binder mixture was 

added to the ground LiFePO4-C mixture, such that the binder constitutes 10 wt. % of the 

total weight of the final mixture. The above mixture was vortexed at maximum rpm for 

about 30 minutes. If needed, more NMP was added in order to obtain slurry of required 

consistency. The final slurry was magnetically stirred at 300 rpm for 24 hours. The 

following day this slurry was spin coated on the polished and etched copper substrate at 
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300 rpm under N2 gas. At this rotation speed the slurry uniformly spreads on the copper 

disc. The resulting cathode was dried under vacuum in a desiccator at 90°C overnight. 

The cathode was placed between two weighing papers to protect the coating and pressed 

under a load of approximately 5 tons using a hydraulic press. The cathodes were then 

transferred into an argon-filled glove box (H2O and O2 < 1 ppm) and stored there before 

spin-coating of the prepared solid polymer electrolyte mixture. 

 

3.9 Preparation and Spin-Coating of Solid Polymer 

Electrolyte (SPE) 

 

For battery tests a solid polymer electrolyte was prepared using acetonitrile, 

poly(ethylene oxide) (PEO), LiPF6 and TiO2 inside an argon-filled glovebox according to 

modification of the following literature procedure [2]: 

 

Commercial anatase TiO2 nanoparticles were dried at 50 oC under vacuum for 4 hours. 1 

M solution of LiPF6 in acetonitrile was prepared and stirred at RT for 2 hours. TiO2 

nanoparticles (10 wt. %) were ground in a mortar and pestle, and then added to the above 

solution. The resulting slurry was then ultrasonically agitated for 30 min at RT. This 

procedure was to avoid both agglomeration of TiO2 nanoparticles and to remove gas 

bubbles present in the solution, which could significantly affect the spin coating process. 

Then the slurry was stirred for an additional 2 hours at RT. PEO was added to the mixture 

at a [O]:[Li] ratio of 12:1 for PEO monomer:LiPF6 and stirred at RT for 20 hours. The 

resulting slurry was spin coated at 150 rpm on both anode and cathode. The resulting 

polymer-coated anode and cathode were left to evaporate at room temperature under 

argon gas for 8 hr to remove the acetonitrile. Then the coated samples were dried under 

vacuum in a desiccator at 50 oC for 8 hours, at which point they are ready to be used in 

battery coin cell assembly. 
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3.10 Lithium-Ion Battery Cell Assembly and Testing 

 

For the results of chapter 4.7 a two-electrode electrochemical cell design was developed 

in-house and is shown in Fig. 3-1. In this cell the anode is considered as both the counter 

electrode (CEr) and reference electrode (RE), and the cathode is the working electrode 

(WEr). The anode and cathode are separated by the solid polymer electrolyte (SPE) layer. 

The cell design is a Teflon cup with inner diameter of 14 mm and depth of 10 mm. A 

copper metal rod inserted through the base serves as the current collector for the cathode, 

and a copper spring through the lid as the collector for the anode. The assembly and 

testing of the cell was performed inside an argon-filled glovebox according to the 

following procedure:  

 

A polymer-coated cathode was placed face up inside the bottom of the Teflon cell and 

connected as the working electrode. To ensure swelling of the SPE layer, a micropipette 

was used to dispense 100 µL of propylene carbonate onto the polymer-coated cathode. 

Then the polymer-coated anode was placed face down on top. The spring-loaded cap for 

the Teflon cell was then tightened to complete assembly. A wire welded to the copper 

spring was connected as both counter and reference electrodes. Finally, the cell was 

allowed to stabilize for 2 hours before commencing galvanic cycling, to ensure proper 

wetting of the polymer electrolyte by the propylene carbonate. Cell testing was 

performed using a Princeton Applied Research Potentiostat/Galvanostat Model 263A and 

Corrware software. The galvanostatic charge-discharge cycles were conducted at multiple 

current densities for varying numbers of cycles. The details may be found in Table 3-3-7. 

The charge/discharge time limits were set at 500 seconds each for all battery samples, 

with the exception of sample BAT5 in which the time limits were 1000, 1000, 500, 500, 

250, 200, 150 and 100 seconds respectively. For all experiments the upper and lower 

potential limits were +5V and 0V respectively. Exposed sample diameter was 14 mm for 

both anode and cathode electrodes resulting an electrode area of 1.54 cm2. 
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Figure 3-1: Schematic cross-section structure of a lithium-ion battery coin cell with 

solid polymer electrolyte 
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3.11 Scanning Electron Microscopy (SEM)  

 

After electrochemical measurements the morphology of each anode sample was 

investigated by scanning electron microscopy (SEM) using a Zeiss LEO 1540 XB 

scanning electron microscope. All images were collected at an electron column voltage of 

1 kV, with possible magnifications of 100, 1000, 5000, 10000 and 25000 if surface 

charging was not excessive.  

 

3.12 Energy-Dispersive X-ray (EDX) Spectroscopy 

 

Energy dispersive x-ray (EDX) analysis was performed with the attached Oxford 

Instruments X-sight detector. All EDX spectra were collected at 7 kV electron column 

voltage, acquisition time of 50 seconds and 1000x magnification and analyzed in INCA 

software. 

 

3.13 Time-Of-Flight Secondary Ion Mass Spectrometry 

(TOF-SIMS) Depth Profiling  

 

TOF-SIMS analysis was performed on certain anode samples after electrochemical 

measurements using an ION-TOF  (GmbH) TOF-SIMS IV spectrometer operating in the 

dual-beam profiling mode. The instrument was equipped with a 25 keV Bi3
+ cluster 

primary ion beam with a pulse width < 2 ns (target current ~ 1 pA) as the analysis gun 

with a 3 keV Cs+ primary ion beam (target current ~ 16 nA) as the sputter gun, both 

angled at 45o incidence. The sputter gun was pulsed for 1 second at an area of 150 µm x 

150 µm with a pause of 500 ms, until activation of the analysis gun to generate secondary 

ions from a 75 µm x 75 µm analysis area within this sputter crater. This process was 

repeated for a total sputter time of 400-700 seconds and 250-350 seconds within the 

cycled and uncycled areas respectively. The secondary ions were extracted by an electric 

field (2 kV), mass separated and detected via a reflectron-type time-of-flight analyzer. 

Due to the typical suppression of positive ion yields by the Cs+ sputtering beam, only 
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secondary ions of negative polarity were collected. For each scan with the analysis gun, 

mass spectra were collected from a raster of 128x128 pixels. A pulsed low energy (18 

eV) electron floodgun was used to neutralize sample charging. The base pressure of the 

analytical chamber was around 1*10-8 mbar. Data acquisition and analysis of spectra, 

images and depth profiles was performed in IonSpec and IonImage v 4.1 software (ION-

TOF). Negative ion spectra calibration was performed with H- and C- peaks. Structure 

attributions or assignments of ion peaks were made according to the instrument resolution 

(M/∆M = 6000 at m/z 429), accuracy and valence rule. Identification of secondary ion 

series such as Alx
- and CxN

- was confirmed by observing their co-localization in the 

images acquired throughout profiling. 

 

3.14 Surface Profilometry 

 

After removal from the TOF-SIMS instrument chamber the samples were immediately 

subjected to surface profilometry using a KLA Tencor P-10 surface profiler. The stylus 

was operated with an applied force of 30 mg (30 µN) across a distance of 7000 µm 

corresponding to a line scan of gasket area to the cycled area and across to the opposite 

gasket area. 

 

3.15   Electrochemistry Techniques and Methodology used 

in Lithium-Ion Battery Research 

 

3.15.1    Cyclic Voltammetry 

 

Cyclic voltammograms (CVs) can be used to characterize the redox processes occurring 

in both anodic and cathodic materials during lithiation-delithiation in lithium ion batteries 

(LIB) [3-6]. Typically a CV is performed in a liquid half-cell electrochemical setup 

where the electrode of interest can be isolated as the working electrode and there is a 

separate cell compartment with a reference electrode. In this 3-electrode cell both counter 

and reference electrodes for LIB electrode research are typically lithium metal foils or 
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wires. However other materials are possible too such as platinum and silver wires used 

for counter and reference electrodes respectively in this thesis work. Regardless of the 

reference electrode used it is possible to measure the formal potential of a known redox 

system such as the ferrocene/ferrocenium couple relative to the same reference system, 

and then convert the potential scale to the Li+/Li potential scale common for Li battery 

research in the literature. Isolating the electrode of interest as a working electrode in a 3 

electrode half cell with a liquid electrolyte ensures that the redox processes observed in 

the CV are strictly occurring at the working electrode. Therefore the potentials that are 

measured are not affected by changes occurring at the reference electrode, because the 

reference electrode does not take part in any electrochemical reactions. 

 

In a CV the system first typically sits at its open-circuit potential (OCP). Optionally it 

may then first be charged potentiodynamically to an anodic potential well above the 

region where any cathodic processes are expected to occur at the working electrode 

surface. Then a potential is applied between the working-counter electrode couple to 

"sweep" the system to more negative potentials. This produces cathodic currents 

associated with reduction processes occurring at the working electrode, and the potential 

sweep continues until a designated left vertex is reached in the CV. Then the system is 

swept in the reverse direction to more positive potentials. This produces anodic currents 

associated with oxidation processes occurring at the working electrode until a designated 

right vertex is reached in the CV. This forward and reverse potential sweeping of the 

system can be repeated to observe how redox features in the CV change with repeated 

scanning. 

  

In LIB research the redox processes observed in the CV depend on the anode system. For 

example with the most common choice being graphitic materials the reduction processes 

are typically lithium ion intercalation (lithiation) between the graphite sheets, with the 

corresponding oxidation process being lithium ion deintercalation (delithiation) back into 

the electrolyte solution. In metal or metal-oxide anode systems such as Si, SnO2 and Al 

the processes of lithiation-delithiation occur through electrochemical metal-alloying and 

de-alloying reactions to form intermetallic compounds of various stoichiometry. In 
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addition to onset potentials and peaks associated with redox processes there are features 

of a CV that may be indicative of other important processes such as the relative degree of 

volume change during lithiation-delithiation and the formation of solid electrolyte 

interphase (SEI) layer at the electrode surface. Considering the focus of this thesis work 

is Al anodes we describe here the typical CV features involved with lithiation-delithiation 

of a commercially available Al 1100 alloy (99% Al) in an electrolyte of 0.1M LiPF6 in 

propylene carbonate. The features of typical Al anode CVs shown here will be referred to 

frequently in the half-cell results presented in Ch. 4.1 to 4.5. 

   

Shown in Fig. 3-2 are the features of a typical CV of a bulk Al anode recorded between 

approximately 0.25V and 2V at a scan rate of 1 mV/sec for 3 scans. The bolded numbers 

in the figure denote the first, second and third scans respectively. All potentials are 

quoted relative to the Li+/Li potential scale. The CV is begun by sweeping in the cathodic 

direction starting from 2.0V. Initially we see a small increase in the cathodic current 

below 2V due to initial formation of the SEI layer. The SEI formation involves 

irreversible partial reduction and decomposition of the electrolyte and any traces of 

moisture that may be present [7]. Continued sweeping in the cathodic direction results in 

the onset of lithiation around 0.4V to 0.5V and is associated with a sharp increase in 

current. This corresponds to onset of Li+ reduction to yield a LiAl alloy (i.e. Li+ + e- + Al 

� LiAl), which has a standard potential of +0.4V vs. Li+/Li [5-6].   
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Figure 3-2: Features of a typical cyclic voltammogram (CV) for lithiation-

delithiation of a bulk Al anode. Numbers indicate first, second and third scans 

respectively with each scan commencing at the right vertex potential. Black arrows 

indicate the scan direction.  

 

The slope that follows the lithiation onset potential will be related to the degree of 

volume change in the anode. Following the onset the lithiation process continues in the 

CV until it is terminated by the left vertex. The chosen potential for the left vertex is 

significantly more positive than 0V to prevent possible deposition of lithium metal at the 

anode. Sweeping back in the anodic direction is characterized by a so-called 'nucleation 

loop' in the scan. This behaviour is associated with formation of the new LiAl 

intermetallic phase [5]. The intermetallic alloy phase formed has a higher surface area 

due to the associated volume change, 97% for LiAl [8]. Therefore the current of the 

reverse scan is higher than on the direct scan. Also, the kinetics of the lithiation may 
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differ on lithiated and non-lithiated substrates. The area enclosed by the loop is 

proportional to the volume changes associated with the intermetallic phase formation. 

Continued sweeping in the anodic direction will result in a large broad oxidation peak at 

0.9V to 1.0V, which corresponds to oxidation and delithiation of the LiAl alloy (i.e. LiAl 

� Li+ + Al + e-) [5-6]. The difference between the onset potential and this peak potential 

may be considered as a measure of the electrochemical irreversibility of the 

lithiation/delithiation processes, and is commonly termed the 'overvoltage'.  

 

Further CV scans will alter each of these respective features described above. The 

formation of SEI will continue although in progressively smaller amounts. This suggests 

that some portion of the SEI layer is destroyed on the delithiation part of the scan, due to 

the volume changes of alloying/de-alloying anodes [7] or other processes. As fresh Al 

material is exposed this will result in more SEI formation in additional scans. In general  

the cathodic currents following the lithiation onset potential and anodic currents of the 

delithiation peak will become progressively larger, also resulting in an enlargement of the 

loop. These features should be attributed to continuing formation of the new intermetallic 

LiAl phase and progressively increasing surface area of the anode associated with this 

process. This indicates that repeated lithiation-delithiation cycles give rise to continuing 

growth of the new phase at the electrode surface. This will also contribute to continuing 

SEI formation.  

   

3.15.2   Galvanic Cycling 

 

Galvanic cycles (chronopotentiograms) are practically useful for simulating the real 

charge/discharge behavior of battery materials. The cycles involve a current being 

applied to a system while the potential is monitored. The current is applied until a 

particular limit of charge or potential is reached, at which point it is stopped or the 

reverse current is applied.  In this work Al anodes are cycled both in a 3-electrode liquid 

half-cell as well as in a 2-electrode battery prototype using a solid polymer electrolyte 

(SPE) and a LiFePO4 cathode. To illustrate the features of galvanic cycles for Al anodes 

and their meaning let us first consider again the 3-electrode liquid half-cell. Shown in 
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Fig. 3-3 are the characteristic features of a galvanic cycle for an Al anode at a current 

density of 0.25 mA/cm2. 

 

 

 

Figure 3-3: Typical galvanic cycle for lithiation-delithiation of an Al anode in a 3-

electrode half-cell. Numbers indicate the features of interest: (1) potential overshot 

(2) charge plateau (3) IR drop (4) discharge plateau (5) discharge tail. 

 

Overall the shape of the potential response in a galvanic cycle (chronopotentiogram) can 

be rationalized by considering the concentration changes of the redox species of interest 

as a function of time. In the case of Al anodes this would involve the reversible electron 

transfer reaction 'Al + Li+ + e- <--> LiAl'. Charging of the anode corresponds to reduction 

(lithiation) in the forward direction of this equation with discharging corresponding to 

oxidation (delithiation) in the opposite direction. Before applying the current, there is no 

LiAl formed yet and the initial potential is determined by some other equilibria. 
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The current to charge the anode is applied first, producing a potential minimum (1). This 

potential overshot is associated with the formation of a new electroactive phase at the 

anode surface. For Al anodes this would be initial formation of the intermetallic LiAl 

phase at the Al surface [5-6]. This minimum is followed by a single long and flat 

charging plateau (2) that corresponds to the continuing formation of the intermetallic 

phase at the surface of the phase formed earlier. A plateau is formed because an 

equilibrium is set up between the intermetallic LiAl phase and Li ions in the electrolyte 

solution, which allows the electrode potential to be described by the Nernst equation (2): 
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Since the concentration of Li ions in the solution should stay constant, and the activity of 

a solid LiAl phase is unity, the electrode potential should also stay constant once the 

equilibrium is established. Deviations from this Nernstian potential may be observed only 

if the equilibrium conditions at the electrode are violated such as due to slow electrode 

kinetics. For the charge plateau such a deviation would be represented by some degree of 

downward drift of the potential. Generally speaking, even if there are some other 

concurrent processes, the electrode potential will still be determined by the 

electrochemical equilibrium with the highest exchange current density. Therefore the 

appearance of multiple charge (or discharge) plateaus in a galvanic cycle will correspond 

to multiple redox processes, and only one redox process will occur at a time at or around 

its equilibrium potential (when overvoltages are taken into account), until it finishes and 

then the cell potential will move on until it encounters the next process. The duration of 

the plateau for each respective redox process will be proportional to the amount of charge 

and the amount of electroactive material present. Here for lithiation of Al anodes there is 

only a single reduction process (LiAl formation) and it is a bulk material so there is no 

limitation by the amount of the electroactive material. Therefore, only a single charging 

plateau is observed and charging continues until it is terminated by a pre-defined time 

constraint. 
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Upon switching the current direction, the cell potential exhibits an instantaneous jump (3) 

caused by non-zero resistance of the electrolyte (IR drop). The significance of this feature 

will be discussed in the next section. This jump is followed by a long flat discharge 

plateau (4) governed by the same Nernstian type equilibrium between the intermetallic 

LiAl phase and Li ions in the solution described above for the charging portion, plus the 

overvoltage, which provides the necessary driving force to extract the Li ions. As 

delithiation continues, the lithium concentration progressively decreases resulting in a 

steady reversion of intermetallic LiAl phase within the host matrix to delithiated Al (6). 

However, the potential stays approximately constant as long as there is still some LiAl 

phase left. As we progress further the potential begins to rapidly increase reflecting the 

depletion of the LiAl phase (5). This indicates the end of the main discharge plateau. 

Fitting the linear portion of the discharge plateau (4) and dividing by the total charging 

time allows for calculation of the coulombic efficiency (CE), which represents the ratio 

of the delithiation and lithiation charges and describes the reversibility of lithiation-

delithiation. The cycle terminates when the electrode potential reaches a preset limiting 

value, which in this case was +2.7 V. There may be also additional processes that are 

associated with different equilibria or kinetics and thus they appear as separate plateaus. 

They will be described as appropriate in the corresponding sections.  

 

For Al anodes in a 2-electrode battery prototype setup with a solid polymer electrolyte 

and LiFePO4 cathode the cycle behaviour will be quite different, shown in Fig. 3-4. The 

anode plays the role of both the reference and counter electrodes in this system and 

therefore the cell voltage will be the difference of the potentials between anode and 

cathode. However, since we intentionally fabricated the cathodes in such a way so that 

LiFePO4 is in a huge excess as compared to the amount of LiAl phase formed, we 

consider that the cathode potential remains constant throughout all experiments and the 

changes in the cell voltage are related to the processes at the anode. Again there is 

initially a potential overshot for initial formation of new LiAl phase (1), followed by a 

'charging plateau' (2) involving lithiation of the anode and delithiation of the cathode. 

After the instantaneous potential jump of the IR drop (3) there is a 'discharging plateau' 

(4) involving delithiation of the anode and lithiation of the cathode. As this process is 
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exhausted the cell potential sharply decreases towards the preset limiting value of 0V that 

indicates full discharge. Similar to the half-cells the linear portion of the 'discharging 

plateau' may be divided by the total time of the charging portion to determine the 

coulombic efficiency of the cycle.  

 

 

Figure 3-4: Typical galvanic cycles for lithiation-delithiation in a 2-electrode battery 

prototype setup with a solid polymer electrolyte, conductive LiFePO4 cathode and a 

bulk Al anode at a current density of 0.065 mA/cm
2
. Numbers indicate the features 

of interest: (1) potential overshot (2) anode lithiation and cathode delithiation 

plateau (3) IR drop (4) anode delithiation and cathode lithiation plateau (5) 

discharge tail. 

 

Unlike in the half-cells the charge/discharge plateaus are clearly not flat here for the 

battery and instead show some upward/downward drifting in potentials respectively. 

Therefore there is some deviation from the Nernstian equilibrium potentials. The LiAl 

phase formation and dissolution on Al anodes occurs during charging and discharging 

portions of the battery cycle respectively. Therefore a change in battery cycle features 

implies a kinetic, resistance or mechanical (from SPE) limitation against LiAl phase 



www.manaraa.com

81 

 

formation and dissolution, which causes deviation from the equilibrium potential in 

charging and discharging portions of the cycle respectively. 

3.15.3   Determination of the IR drop from galvanic cycles 

The Randles circuit is one of the simplest and most common equivalent circuit models. It 

includes a bulk electrolyte resistance, a double layer capacitor or a constant phase 

element (CPE) in case of developed interfaces, and a polarization or a charge-transfer 

resistance. The Randles circuit can be used as a good general approach to model the 

various phenomena going on at the interface of the anode in lithium ion battery. It 

describes the electrochemical process of charge transfer for one electrode in an 

electrolyte, such as the Al anode (working electrode) in the 3-electrode half-cell. Fig. 3-5 

shows the Randles circuit with the electrolyte resistance Re, the charge transfer resistance 

Rct, in parallel with the double layer capacitance Cdl. In more advanced models, the 

simple charge-transfer resistance can be replaced with complex charge-transfer 

impedance Zct or even more complex circuits; however, the most important fact for us is 

that these circuit elements will always be in parallel with the double-layer capacitance of 

the electrode. 

 

Figure 3-5: The typical Randles circuit for a working electrode in a half-cell. 

 

In the 2-electrode Li-ion battery prototype, the current flows between the anode: Al and 

cathode: LiFePO4 through an ionically conducting electrolyte. Therefore, the equivalent 

circuit of the cell must be modified as shown in Figure 3-6 to include the impedances of 
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the anode and the cathode, both with their corresponding double-layer capacitances, as 

well as the resistance of electrolyte in series with the two electrodes.  

 

 

Figure 3-6: The equivalent circuit for battery prototypes. 

 
 

When current is flowing in an electrochemical cell, there is an IR voltage drop (potential 

difference) between the working (WEr) and counter (CEr) electrodes. In the half-cell this 

effect is balanced by the presence of the reference electrode (RE) so that only a portion of 

the electrolyte resistance is actually measured at the working electrode. In the battery 

prototypes, there is no separate reference electrode and the IR voltage drop occurs 

between the LiFePO4 cathode (WEr) and Al anode (CEr). This voltage drop is related to 

the electrolyte resistance Re and the magnitude of the current I according to Ohm’s law: 

                                                             

∆Eohmic = I * R e  (3) 

where ∆Eohmic is the ohmic drop or IR drop, and Re is the ohmic resistance of the 

electrolyte. The IR drop is inversely proportional to the electrolyte conductivity. The 

lower the conductivity of the electrolyte, the higher the ohmic resistance and therefore the 

higher the IR drop [9].  
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The IR drop and thus the value of Re can be determined using so-called current interrupt 

method. In this method, the current in the electrochemical cell is abruptly changed. 

However, since the voltages at capacitances in the equivalent circuit of Fig. 3-6 cannot 

change instantaneously, the electrode impedances Zct are short-circuited at the time of the 

current interrupt and the only change in the voltage across the cell is associated with the 

potential drop at the electrolyte resistance I·Re. In our galvanic cycles, the current 

changes from +I to –I; hence; ∆I=2I and Re can be expressed with equation 4: 

                              

I

E
Re 2

∆
=      (4)                                                   

Therefore, using this approach, we can determine the resistivity (Re) of our solid polymer 

electrolytes from the potential jumps when the current direction is switched during 

galvanic cycles of a battery. 

However, if we measure not the instantaneous but steady-state IR drop (steady-state 

means after fully charging the double-layer capacitances in Fig. 3-6; this usually takes 

several seconds), the resistance will correspond not to Re but to the sum of Re and two 

charge transfer resistances Rct at the anode and the cathode. Again, we assume that for the 

cathode, Rct is small because of its much higher capacity. Therefore, we will measure this 

way the sum of the Re and the Rct at the anode. In this work, we mainly are interested not 

in instantaneous but steady state IR drop that can be obtained from the separation 

between the charging and discharging plateaus. The plateau separation and the charge 

transfer resistance have the same meaning of the degree of irreversibility of the charging 

and discharging processes, but the latter is more convenient when comparing the effects 

at different current densities. We will use both these parameters in our discussion as 

appropriate.  
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Chapter 4 

 

4 Results 

 

4.1 Bare Aluminum Anodes, Al 1100 alloy, Goodfellow,  

Half-Hard 

 

Summary 

 

To investigate the effects of mechanical properties and the surface oxide on lithiation-

delithiation we prepared bare Goodfellow Al (GF Al) (half-hard) anodes with varying 

degrees of surface oxide removal. The preparation of the four GF Al samples (GF1 to 

GF4) used in this sub-chapter was described previously in the experimental details of Ch. 

3. In particular, sample GF1 had the native surface oxide removed as much as possible by 

polishing and etching; sample GF2 was polished but not etched with some native oxide 

remaining; sample GF3 had the native oxide removed but new oxide was formed by 

thermal oxidation in moist atmosphere; and sample GF4 had its native oxide fully intact. 

These samples were characterized electrochemically in 4x8 experiments, which begin 

with a cyclic voltammogram (CV) for three scans, followed by four sets of eight galvanic 

cycles at progressively higher current densities. In the initial CVs we only observed 

minor differences in the features with increasing oxide content, primarily in the region of 

solid-electrolyte interphase (SEI) formation and the overvoltage of lithiation-delithiation. 

In the galvanic cycles we observed minor differences in the charge-discharge plateau 

separation, as well as a detrimental impact of the oxide on the charge-discharge 

reversibility at lower current densities due to more pronounced diffusion-limited losses in 

the discharge peak. Surface analysis of these samples after electrochemistry revealed 

increased heterogeneity in the porous intermetallic alloy of GF2 to GF4 with regions of 

limited reactivity. 
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An additional sample (GF5) of the same type as GF1 (native oxide removed), which 

showed the best performance in the 4x8 experiments, was characterized 

electrochemically in a failure experiment, in which galvanic cycling of the anode begins 

immediately at a higher current density without initial conditioning through a CV. This 

cycling was sustained for 140 cycles to observe the anode performance over time. A 

pronounced degradation of the performance was observed, which manifested itself as 

potential jumps in the charge/discharge plateaus as well as systematic cracking of the 

anode surface. 

 

4.1.1 Cyclic Voltammograms, Galvanic Cycles, Calculations 

 

Shown in Fig. 4-1-1 are the features of a typical CV of a bare GF Al anode recorded 

between approximately 0.25V and 2V vs. Li+/Li reference electrode at a scan rate of 1 

mV/sec for 3 scans. The bolded numbers in the figure denote the first, second and third 

scans respectively. The CV is begun by sweeping in the cathodic direction starting from 

2.0 V. Initially we see a small increase in the cathodic current below 2V due to initial 

formation of the SEI layer.  
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Figure 4-1-1: Typical cyclic voltammogram (CV) for lithiation-delithiation of a GF 

Al anode. This is sample GF1 which was subjected to polishing and etching in 

alkaline conditions prior to electrochemical scans. Numbers indicate first, second 

and third scans respectively with each scan commencing at the right vertex 

potential. Black arrows indicate the scan direction. 

 
The SEI formation involves irreversible partial reduction and decomposition of the 

electrolyte and any traces of moisture that may be present [1]. Continued sweeping in the 

cathodic direction results in the onset of lithiation around 0.4V to 0.5V and is associated 

with a sharp increase in current. This should correspond to onset of Li+ reduction to yield 

a LiAl alloy (i.e. Li+ + e- + Al = LiAl), which has a standard potential of +0.4V vs. Li+/Li 

[1-3]. The slope following the lithiation onset potential will be related to the degree of 

volume change in the anode. Following the onset the lithiation process continues until the 

CV scan is terminated at the left vertex. Sweeping back in the anodic direction is 

characterized by a so-called nucleation loop in the scan. This behaviour is associated with 

the formation of the new phase [1]. As the intermetallic alloy phase formed has a higher 

surface area due to the associated volume change, the current of the reverse scan are 
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higher than on the direct scan. Also, the kinetics of the lithiation may differ on lithiated 

and non-lithiated substrates. Continued sweeping in the anodic direction results in a large 

broad oxidation peak at 0.9V to 1.0V, which should correspond to oxidation and 

delithiation of the LiAl alloy (i.e. LiAl = Li+ + Al + e-) [1-2]. The difference between the 

onset potential and this peak potential may be considered as a measure of the 

electrochemical irreversibility of the lithiation-delithiation processes.  

 

Further CV scans alter each of these respective features described above. One can see 

that SEI still continues to be formed albeit in progressively smaller amounts. This 

suggests that some portion of the SEI layer is destroyed on the delithiation part of the 

scan, due to the volume changes of alloying/de-alloying anodes [5]. As fresh anode 

material is exposed this will result in more SEI formation in additional scans. The 

cathodic currents following the lithiation onset potential and anodic currents of the 

delithiation peak will become progressively larger, also resulting in an enlargement of the 

loop. These features should be attributed to continuing formation of the new intermetallic 

phase and progressively increasing surface area of the anode associated with this process. 

This indicates that repeated lithiation-delithiation cycles give rise to continuing growth of 

the new phase at the electrode surface.  

 

A number of minor differences are observed in the CV features with increased oxide 

content. First we consider the partial cathodic scans between 2V and 0.25V (Fig. 4-1-2). 

The bolded numbers 1 to 4 denote the GF1, GF2, GF3 and GF4 samples respectively (no 

oxide, some oxide, thermal oxide, native oxide). Within this region GF4 (native oxide) 

shows the smallest cathodic current for the SEI formation, with the largest current 

observed for GF2. These two samples have a broad SEI formation possibly due to lack of 

the etching step since the etched GF1 and GF3 samples do instead show a distinct 

reduction peak observed around 1.0 V. This value is in agreement with the potential 

range observed for SEI formation on Al nanowires [1]. Additional scanning produces 

larger amounts of additional SEI formation for GF2 to GF4 relative to GF1 (no oxide). 

This behaviour suggests that varying degrees of surface oxide retention during anode 
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preparation of GF Al may promote more SEI formation during lithiation-delithiation as a 

parasitic loss of lithium.  

 

 

 

Figure 4-1-2: Initial cyclic voltammograms of four GF Al anodes prepared with 

varying degrees of surface oxide remaining. Partial cathodic scans from 2V to 0.35V 

to highlight  SEI formation and lithiation onset behaviour. Samples GF1 (oxide 

removed), GF2 (polished only), GF3 (additional oxide) and GF4 (native oxide) in 

black (1), red (2), blue (3) and green (4) colors respectively.  

 
Moving on we observe that increased oxide content causes a shift in the lithiation onset 

potential with a shallower slope afterwards. However, once the cathodic current sharply 

increases the shapes for all four samples are comparable. Additional scanning will 

produce an even smaller difference in the onset potentials and overall very similar slopes. 

This is understandable since the processes after the start of lithiation and especially in the 

2nd and subsequent scans occur on a different surface of the LiAl intermetallic phase 

formed during the scanning.  
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Next we compare the full CV scans of all samples in Fig. 4-1-3. All samples show well 

defined nucleation loops in the anodic scans with a much smaller loop area observed for 

GF1 (no oxide). The delithiation peak potential is shifted positively with increased oxide 

content.  

 

 

 

Figure 4-1-3: Initial cyclic voltammograms of four GF Al anodes prepared with 

varying degrees of surface oxide remaining. Full single scans with samples GF1 

(oxide removed), GF2 (polished only), GF3 (additional oxide) and GF4 (native 

oxide) in black (1), red (2), blue (3) and green (4) colors respectively.  

 
In view of the shifts in lithiation onset potentials discussed earlier, this results in a 

slightly larger overvoltage for the samples with oxide layers (GF2 to GF4) relative to the 

sample without oxide (GF1). This suggests that the relative absence of surface oxide is 

beneficial for lithiation-delithiation. The shift in the delithiation peak potential was most 

pronounced for the native oxide sample (GF4), whereas the peak symmetry for samples 

GF1 to GF3 appears fairly similar. This behaviour suggests that it may be more difficult 

to extract lithium from the intermetallic phase that was formed in the presence of native 
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surface oxide. The increasing diffusion-limited loss of lithium within the electrode bulk 

due to increased surface oxide content is a topic that will be explored in more detail in the 

galvanic cycles.  

 

Shown in Fig. 4-1-4 are characteristic features of a typical set of half-cell galvanic cycles 

for a GF Al anode at two current densities of 0.25 mA/cm2 (black) and 1 mA/cm2 (red). 

Initially we observe a potential minimum in the charging portion of the cycle (1) due to 

the potential overshot involved in formation of the intermetallic LiAl phase at the Al 

surface [2, 6-7]. This minimum is followed by a single long and flat charging plateau (2) 

that corresponds to the continuing formation of the intermetallic phase at the surface of 

the phase formed earlier. Therefore, the corresponding potential is lower and is governed 

by the equilibrium between the intermetallic LiAl phase and Li ions in the electrolyte 

solution in accordance with the Nernst equation [2]. At lower current densities the 

charging plateau is relatively flat. The fact that the charging potential remains 

independent of the amount of Li ions reacted at the electrode clearly indicates the 

formation of the intermetallic phase rather than an intercalation compound or a solid 

solution. Otherwise the Nernstian potential would be constantly changing in the course of 

lithiation-delithiation. At higher current densities the plateau potential shifts downwards 

due to an increased driving force required for lithiation. Moreover, there is an increasing 

downward trend due to diffusion-limited transport of lithium ions in the Al host that 

should cause an additional concentration polarization at the electrode.  
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Figure 4-1-4: Typical galvanic cycles for lithiation-delithiation of a bare GF Al 

anode. This is sample GF1 which was subjected to polishing and etching in alkaline 

conditions prior to electrochemical scans. Numbers indicate the features of interest: 

(1) potential overshot (2) charge plateau (3) IR drop (4) discharge plateau (5) 

discharge tail and diffusion-limited plateaus. Galvanic cycles are shown at current 

densities of 0.25 and 1 mA/cm
2
 in black and red colors respectively 

 

 

Charging continues until it is terminated by time, at which point the opposite current is 

applied and the system begins to discharge. Importantly, since we use bulk Al anodes, the 

charging is never limited by the amount of Al present. At the time of switching the 

current direction, the cell potential exhibits an instantaneous jump (3) caused by non-zero 

resistance of the electrolyte (IR drop). This jump is followed by a long flat discharge 

plateau (4) governed by the same Nernstian type equilibrium between the intermetallic 

LiAl phase and Li ions in the solution described above for the charging portion. Similar 

to the charging plateau, this discharge plateau will shift to higher potentials with 

increasing current density due to increased driving force required for delithiation. 

Therefore, the resulting separation between the charge and discharge plateaus will 
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increase with the current density. This behaviour will be analyzed in more details later; 

here we just note that the separation between plateaus clearly exceeds the values that 

could be expected from reversible electrochemical reaction at the electrode even 

factoring in reasonable values of the IR drop due to electrolyte resistivity. It should be 

also noted that the IR drop is as seen in Fig. 4-1-4 extends over several seconds and thus 

should include contributions from both the electrolyte and charge-transfer resistances (the 

instantaneous jump due to pure electrolyte resistance is observed in liquid electrolytes 

over the timescale of milliseconds).  

 

As delithiation continues the lithium concentration progressively decreases resulting in a 

steady reversion of intermetallic LiAl phase within the host matrix to porous delithiated 

Al [2]. However, the potential stays approximately constant as long as there is still some 

LiAl phase left. As we progress further the potential begins to rapidly increase reflecting 

the depletion of the LiAl phase. This indicates the end of the main discharge plateau. 

Fitting the linear portion of the discharge plateau (4) and dividing by the total charging 

time allows for calculation of the coulombic efficiency (CE), which represents the ratio 

of the delithiation and lithiation charges and describes the reversibility of lithiation-

delithiation. As the potential further increases there may one or multiple additional 

changes of inflection corresponding to additional electrochemical processes of a very 

short duration, typically appearing at higher current densities (5). The cycle terminates 

when the electrode potential reaches a preset limiting value, which in this case was +2.7 

V. 

 

Let us use this approach to analyze the differences that are observed in the galvanic 

cycles with increasing oxide content. Shown in Fig. 4-1-5 are the set of galvanic cycles 

of GF1, GF2, GF3 and GF4 in black, red, blue and green colors respectively at a current 

density of 0.25 mA/cm2. In all cases we observe a very stable charging/discharging 

response. With increased oxide content (GF1 -> GF4) there are small shifts in both 

charging and discharging potentials. This is consistent with the differing lithiation onset 

and delithiation peak potentials described in the CVs. Unlike the smaller overvoltage 

observed in the CV of GF1, here the plateau separation of GF1 at lower current densities 
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is actually larger than for GF2 to GF4. This discrepancy is likely related to the very low 

lithiation-delithiation currents in the CV of this sample that were smaller than even the 

lower cycling current densities here. Therefore unlike samples GF2 to GF4, GF1 did not 

experience as extensive formation of the LiAl phase before the start of galvanic cycles 

and so initially featured different surface conditions. However, the main difference 

between the samples in Fig. 4-1-5 is that they feature markedly different lengths of the 

discharge plateaus and thus different coulombic efficiencies. This indicates that the 

presence and structure of the surface oxide on the Al surface do have an effect on the 

mechanism and efficiency of the lithiation-delithiation processes. 

 

 

 

Figure 4-1-5: Galvanic cycles of four GF Al anodes prepared with varying degrees 

of surface oxide remaining at a current density of 0.25 mA/cm
2
. Samples GF1 (oxide 

removed), GF2 (polished only), GF3 (additional oxide) and GF4 (native oxide) in 

black, red, blue and green colors respectively.  
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Shown in Fig. 4-1-6 are the first (a) and last (b) galvanic cycles for all four samples in 

this set. One can see that the increased oxide content decreases the duration of the main 

discharge plateau and thus the coulombic efficiency (CE) (Fig. 4-1-6 a). This effect is 

most apparent in GF2 and GF3 relative to GF1 with only a small difference observed for 

GF4. However the differences in CE become less pronounced by the eighth cycle (Fig. 4-

1-6 b). The evolution of the coulombic efficiencies with the cycle number is shown in 

Fig. 4-1-7 for the four current densities used. One can see that for all current densities the 

sample with the surface oxide removed (GF1) performed best. The only exception was 

the highest current density (Fig. 4-1-7 d) where all samples performed quite poorly. Even 

then, the GF1 performance was not worse than that of the other samples. The GF1 sample 

also showed the smallest variability in the efficiency with cycling except again at the 

highest current density.  

 

 

 

Figure 4-1-6: (a) First and (b) last galvanic cycles of four GF Al anodes prepared 

with varying degrees of surface oxide remaining at a current density of 0.25 

mA/cm
2
. Samples GF1 (oxide removed), GF2 (polished only), GF3 (additional oxide) 

and GF4 (native oxide) in black, red, blue and green respectively. Cycles in the right 

figure have been offset to overlap the curves on the same time scale. 
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Figure 4-1-7: Coulombic efficiencies of four GF Al anodes prepared with varying 

degrees of surface oxide remaining at current densities of (a) 0.13 (b) 0.25 (c) 0.5 and 

(d) 1 mA/cm
2
. Samples GF1 (oxide removed), GF2 (polished only), GF3 (additional 

oxide) and GF4 (native oxide) in black, red, blue and green respectively. 

 

Importantly, the performance of all samples at high current densities markedly improved 

with cycling. This shows that this limitation can be partially overcome with electrode 

conditioning whereby a new LiAl phase is constantly made, lithated and delithiated at the 

electrode surface during repeated charging-discharging cycles, especially, at low current 

densities. We call this process electroformation and it will be discussed in considerable 

detail below.  

 

To investigate the stability and cycling ability of the GF Al anode we performed a half-

cell failure experiment on a new sample GF5. The sample was prepared in the same way 

as “oxide-free” sample GF1 described above since that sample showed the best 
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performance. However, in this experiment no prior electroformation of the LiAl phase 

was performed using either a CV or galvanic cycles at low current densities. The cycling 

was commenced directly at a high current density of 0.5 mA/cm2 for a total of 140 cycles. 

This current density is equivalent to that of the third set of cycles in the 4x8 experiments.  

 

Shown in Fig. 4-1-8 is the full set of the corresponding galvanic cycles. One can see that 

the cycling behaviour is quite non-uniform and shows in particular significant and quite 

abrupt changes in both charging and discharging potentials (potential jumps). Since little 

further detail is seen in this figure due to the sheer number of cycles, Fig. 4-1-9 shows the 

first two and last two cycles in black and red respectively. Arrows in the red curve 

indicate that, in addition to the main discharge plateau, secondary and tertiary plateaus 

appear over time in the discharge portion of the cycle. These plateaus indicate the 

occurrence of some additional processes that occur at much higher overvoltages as 

compared to the main delithiation process. The shape of these plateaus are also different: 

the potential is not constant and changes with time thus indicating that these responses 

are from a phase that have variable composition and thus whose Nernstian potential 

changes with the delithiation time. We can tentatively attribute these processes to 

delithiation of α-LiAl phase, a solid solution of Li in Al, which is known to exist at low 

Li concentrations even at room temperatures [2]. Therefore, these processes likely 

represent the very last stages of delithiation. Since the Li concentration in the α-LiAl 

phase is low (below 10%), these processes require a greater overvoltage and are likely to 

be diffusion-controlled. α-LiAl is also known to possess a more positive equilibrium 

potential as compared to β-LiAl [8]. Importantly, these processes are observed only in 

certain conditions and their occurrence is likely to signify certain structural changes at the 

electrodes. In order to characterize the performance of the sample, we used two 

parameters: the separation between the charge plateau and the main discharge plateau and 

the coulombic efficiency (CE) of the main discharge plateau. The first parameter is 

plotted in Fig. 4-1-10, whereas the CEs of the main as well as the secondary and tertiary 

discharge plateaus are shown in Fig. 4-1-11 and Fig. 4-1-12 respectively for every fifth 

cycle starting from the first cycle. As in the main discharge plateau the CEs of these 

additional discharge plateaus were obtained by fitting the respective linear portions and 
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dividing by the total charging time of 1000 sec. Additionally, the figures also show the 

data for cycles right before and after the potential jumps observed within the cycle set. 

We did not observe the secondary diffusion plateau begin to appear until approximately 

the 25th cycle with the tertiary plateau appearing around the 5th cycle. Therefore both 

secondary and tertiary efficiencies are absent within these regions of the respective 

figures.  

 

 

 

 

 

Figure 4-1-8: Full set of galvanic cycles for a bare GF Al anode with oxide removed 

GF5 subjected to 140 cycles at a current density of 0.5 mA/cm
2
 without an initial 

CV. 
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Figure 4-1-9: First two (black) and last two (red) galvanic cycles for a bare GF Al 

anode with oxide removed GF5 subjected to 140 cycles at a current density of 0.5 

mA/cm
2
 without an initial CV. Numbers in the red curve denote the secondary and 

tertiary diffusion-limited plateaus appearing over time. The red curve has been 

offset to overlap with the time scale of the black curve. 
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Figure 4-1-10: Charge-Discharge plateau separation for the main discharge plateau 

in a bare GF Al anode with oxide removed GF5 subjected to 140 cycles at a current 

density of 0.5 mA/cm
2
 without an initial CV. Plateau jump events are indicated with 

arrows.  

 

 

 

Figure 4-1-11: Coulombic efficiency for the main discharge plateau in a bare GF Al 

anode with oxide removed GF5 subjected to 140 cycles at a current density of 0.5 

mA/cm
2
 without an initial CV. Plateau jump events are indicated with arrows.  
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Figure 4-1-12: Coulombic efficiencies for the secondary (black) and tertiary (red) 

diffusion-limited discharge plateaus in a bare GF Al with oxide removed GF5 

subjected to 140 cycles at a current density of 0.5 mA/cm
2
 without an initial CV.  

 

 

The very first cycle shows a distinctly larger plateau separation of 1.15V accompanied by 

a poor main CE of only 44% (Fig. 4-1-9 to 4-1-11). However this rapidly improves by 

the fifth cycle to a separation of 0.83V and main CE of 70%. These rapid changes are 

likely due to the initial formation of both the SEI layer and the intermetallic LiAl alloy 

microstructure at the Al surface. Normally in the 4x8 experiments these processes would 

occur during the three scans of the initial CV as well as the cycle sets at lower current 

densities, but those steps are omitted here in this experiment. At the fifth cycle the 

tertiary diffusion-limited plateau begins to appear above 2.3V with a CE of a few percent 

(Fig. 4-1-12). Up to the 20th cycle the main CE steadily increases to a maximum of 73% 

with the plateau separation maintaining a minimum value around 0.84V (Fig. 4-1-10, 4-

1-11). At the 25th cycle and onwards a number of related trends begin to develop. There 

is the appearance of the secondary diffusion-limited plateau around 1.6V soon after the 

main plateau, with an initial CE of 2% (Fig. 4-1-12). This process steadily grows to a 

maximum around 7% highlighting the structural changes at the electrode. At the same 
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time, the main CE steadily decreases to a minimum of around 70%, at which it fluctuates 

for the remainder of the experiment (Fig. 4-1-11). During this time the plateau separation 

gradually increases accompanied by increased downward curvature in the potential of the 

charging plateau (Fig. 4-1-10). The main discharge plateau shifts positive over time and 

so do the potentials of the secondary and tertiary plateaus. This again suggests the 

occurrence of structural changes that affect the overvoltage of the lithiation-delithiation 

processes. By the 20th cycle the potential of the tertiary plateau reaches the cycle upper 

potential limit of +2.7V. Therefore the CE of this tertiary process rapidly drops to an 

insignificant value of around 1% where it remains for the rest of this experiment (Fig. 4-

1-12).  

 

In the meantime, the plateau separation increases to 1.15V by the 80th cycle. At the 80th 

cycle there is a noticeable jump in plateau potentials (Figs. 4-1-8, 4-1-10). Immediately 

following the jump the charge plateau is shifted positive and the main discharge plateau 

shifted negative resulting in a smaller separation of 1.02V (Fig. 4-1-10). The overall peak 

shape and width of the 79th and 81st cycles appeared very similar. In both cases the main 

CE is around 70% with the secondary and tertiary plateaus remaining around 7% and 1% 

respectively (Figs. 4-1-11, 4-1-12). After the jump the main plateau separation appears to 

briefly stabilize but soon again begins to increase towards a value of 1.35V (Fig. 4-1-9). 

Approaching the 125th cycle the charge plateau has now shifted below 0V vs. Li+/Li and 

we observe the second jump (Figs. 4-1-8, 4-1-10). Once again the plateau separation 

resets to a smaller value of 1.19V and immediately begins to increase again with only 

very minor changes observed in the efficiencies. By the 140th cycle both secondary and 

tertiary diffusion-limited plateaus are readily evident in the discharge peak shape  (Fig. 4-

1-9).  

 

The origin of these plateau jumps is likely related to systematic large scale cracking and 

removal of a portion of the intermetallic structure from the surface of the Al anode as the 

stress of repeated lithiation-delithiation volume changes accumulates. Evidence of this 

cracking is presented in the SEM images of section 4.1.2. This process is referred to as 

'pulverization' of active material in the literature is thought to be the dominant capacity 
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loss mechanism for Al and other metal-alloying anodes [6]. As mechanical stresses of 

cracks and voids accumulate there are ever greater driving forces required for 

lithiation/delithiation until a critical point is reached, the jump where the active material 

is broken into smaller pieces. The rather small change in plateau potentials here during 

the jumps accompanied by a minimal change in the main CE may be due to the 

mechanical stability of the strain-hardened GF Al anode. In contrast Ch. 4.2 will 

demonstrate how the McMaster-Carr (MC) bulk Al anode softened by full annealing 

produces a significantly more severe failure mechanism in all respects. The relation of 

mechanical properties and capacity loss mechanisms in Al anodes will be further 

discussed in Ch. 5. 

 

4.1.2 SEM images 

 

Shown in Fig. 4-1-13 a-f are SEM images of the uncycled (a-b) and cycled areas (c-f) of 

the bare GF Al anodes GF1 (oxide removed) and GF3 (additional oxide) after being 

subjected to the 4x8 experiments. The uncycled area of GF1 shows the typical Al etching 

pattern (Fig. 4-1-13 a).  
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Figure 4-1-13: SEM images of uncycled (a, b) and cycled (c-f) areas for bare GF Al 

anodes GF1 (oxide removed) (a,c,e) and GF3 (additional oxide) (b,d,f) after being 

subjected to 4x8 experiments. Magnifications of (a-b) 10000x (c-d) 1000x (e-f) 

10000x.  
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Increased oxide content in GF3 will make this uncycled morphology more rough relative 

to GF1 (Fig. 4-1-13 b), with the omission of both polishing and etching steps in GF4 

producing a mostly featureless surface. Within the cycled area of GF1 we observe a fairly 

homogenous morphology, with a porous structure that should primarily consist of the 

well known intermetallic LiAl alloy (Fig. 4-1-13 c, e). Surveying across the entire cycled 

area of GF1 did not reveal any unreacted aluminum substrate. With the increased oxide 

content of GF3 the porous morphology becomes considerably more heterogeneous with 

larger voids and multiple areas of limited reactivity in terms of intermetallic alloy 

formation (Fig. 4-1-13 d, f). 

 

Shown in Fig. 4-1-14 a-c are SEM images of the cycled area of the bare GF Al anode 

GF5 prepared with full oxide removal and then subjected to 140 cycles at a high current 

density of 0.5 mA/cm2 without an initial CV. The electrochemical behaviour of this 

sample was characterized in Figs. 4-1-8 to 4-1-12. One can see large systematic cracking 

throughout the porous morphology of the cycled area, which should be related to the 

sudden plateau jumps observed in the galvanic cycles. This is most evident when viewing 

the lowest magnification image (Fig. 4-1-14 a). When looking more closely at higher 

magnification the fine details of the porous structure itself are quite similar to that 

observed in GF1 (Fig. 4-1-14 b-c). This is reasonable considering both materials were 

prepared under identical conditions. The morphology in this failure sample GF5 

essentially appears to be the porous structure of GF1 broken into several large pieces. 
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Figure 4-1-14: SEM images of cycled area for bare GF Al anode with oxide removed 

GF5 subjected to 140 cycles at a current density of 0.5 mA/cm
2
 without an initial 

CV. Magnifications of (a) 100x (b) 1000x (c) 10000x.  

 

4.1.3 EDX Composition Chart 

 

Shown in Table 4-1-15 is the EDX composition chart in atomic % of the uncycled and 

cycled areas of the four GF Al anodes GF1 to GF4 after being subjected to the 4x8 

experiments as well as the GF Al anode GF5 after being subjected to 140 cycles at a 

current density of 0.5 mA/cm2. The predominance of Al within the uncycled areas 

indicates a mostly unreactive aluminum substrate with surface contamination by the 

electrolyte (a,c,e,h,j).  
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Table 4-1-15: EDX composition chart of uncycled and cycled areas of four GF Al 

anodes prepared with varying degrees of surface oxide remaining after being 

subjected to 4x8 experiments (GF1 to GF4) and GF Al anode without surface oxide 

after being subjected to 140 cycles at a current density of 0.5 mA/cm
2
 (GF5). Spectra 

were collected at a column voltage of 7 kV for 50 seconds at 1000x magnification.  

 

 Atomic %  

Sample Area C  O  F  Al  Si  P  

GF1  (a)Uncycled  1.65  1.92  0.59  95.67  0.09  0.08  

 (b)Porous  8.14  18.29  37.77  34.74  0.28  0.79  

GF2 (c) Uncycled  3.01  29.56  0.93  65.34  0.81  0.35  

 (d)Porous  6.13  40.29  23.57  29.05  0.15  0.81  

GF3 (e) Uncycled  1.05  11.85  1.89  84.71  0.24  0.27  

 (f) Porous  5.74  29.90  24.98  38.20  0.25  0.93  

 (g) Flat  2.66  20.93  8.54  67.38  0.20  0.31  

GF4 (h)Uncycled  2.17  2.49  1.14  93.79  0.15  0.27  

 (i)Porous  2.90  20.32  38.13  37.88  0.49  0.27  

GF5  (j) Uncycled  1.63  1.83  0.77  95.45  0.29  0.03  

 (k)Porous  2.36  9.48  47.33  38.74  1.39  0.69  
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Carbon and oxygen content should arise from a combination of trace propylene carbonate 

and residual surface oxide present after the various electrode preparations. Phosphorus 

and fluorine content should arise from trace LiPF6 salt remaining after rinsing. The small 

amount of silicon detected in all samples likely originates from a combination of silicon 

carbide paper used for polishing, and as an impurity commonly found in 1100 aluminum 

alloys. It is important to note that pure silicon itself is a well-studied anode for lithium 

ion intercalation [9]. A limitation of the EDX technique is the inability to track lithium 

content due to the overlap of its low energy x-rays with the baseline peak close to 0 eV. 

The increased oxide presence in samples GF2 and GF3 will result in significantly higher 

oxygen content within the uncycled areas relative to GF1 (c,e). However the uncycled 

area of GF4 only shows slightly more oxygen (h). The discrepancy here in GF4 may be 

due to the 7 kV voltage mostly profiling the Al core below the crystalline oxide, 

compared to the more disordered or amorphous oxide in GF2 and GF3.  

 

The cycled porous areas of GF1 to GF4 show significantly elevated carbon, oxygen and 

fluorine content (b,d,f,i). This is likely due to the presence of intact electrolyte within the 

intermetallic structure, as well as the products of solvent electroreduction and salt 

decomposition in the SEI layer [5]. Similar to their uncycled areas the increased oxide 

presence in samples GF2 to GF4 will result in a higher oxygen content within the cycled 

porous areas (d,f,i). For the partially reactive flat regions of GF3 described in the SEM 

images (Fig. 4-1-13 d) the EDX composition will be intermediate (g) between that of the 

uncycled area (e) and the fully reactive porous structure (f). When pushed towards failure 

the GF5 anode will resemble the cycled composition of GF1 but with dramatically higher 

F:O and F:Al ratios in both counts and percentages (k). Considering the LiPF6 salt this 

fluorine content should predominantly come from the electrolyte. However it is not clear 

in what form does this elevated fluorine content exist within the systematically cracked 

intermetallic structure. As described in the CVs of GF1 to GF4 the continued lithiation-

delithiation of GF Al will cause some degree of additional SEI formation beyond the first 

cycle. With sustained cycling in GF5 mechanical stresses will accumulate in the form of 

cracking. This will continuously cause partial destruction of the SEI present within the 

structure and expose fresh Al material for more SEI formation. The LiPF6 salt is also 
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expected to thermally degrade over time into LiF and PF5 if any trace moisture content is 

present [10]. 
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4.2. Bare Aluminum Anodes, Al 1100 alloy, McMaster-Carr, 

Dead-Soft 

 

Summary 

 

In Ch. 4.1 we investigated the effects of mechanical properties and the surface oxide on 

lithiation/delithiation using bare Goodfellow Al (GF Al) (half-hard) anodes with and 

without native surface oxide. As a comparison in this sub-chapter we prepared bare 

McMaster-Carr Al (MC Al) (dead-soft) anodes both with and without native surface 

oxide. The preparation of the two MC Al samples (MC1 and MC2) used in this sub-

chapter was described previously in the experimental details of Ch. 3. In particular, 

sample MC1 had the native surface oxide removed as much as possible by polishing and 

etching while sample MC2 had its native oxide fully intact. These samples were 

characterized electrochemically in 4x8 experiments, which begin with a cyclic 

voltammogram (CV) for three scans, followed by four sets of eight galvanic cycles at 

progressively higher current densities. In the initial CVs we observed several differences 

in the features of MC Al anodes consistent with increased volume change of intermetallic 

phase formation relative to GF Al anodes. In the galvanic cycles we observed minor 

differences in the charge-discharge plateau separation, as well as poor initial reversibility 

of MC1 at lower current densities which was further exacerbated with increased surface 

oxide content in MC2. Surface analysis of these two samples after electrochemistry 

revealed increased heterogeneity in the porous intermetallic alloy structure of MC Al 

anodes relative to GF Al anodes. An additional sample (MC3) of the same type as MC1 

(native oxide intact), which showed the worst performance in the 4x8 experiments, was 

characterized electrochemically in a failure experiment, in which galvanic cycling of the 

anode begins immediately at a higher current density without initial conditioning through 

a CV. This cycling was sustained for 264 cycles to observe the anode performance over 

time. A significantly pronounced degradation of the performance was observed relative to 

GF Al anodes, which manifested as numerous potential jumps in the charge/discharge 
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plateaus, severe degradation of coulombic efficiency as well as a significantly 

heterogeneous multilayer porous structure. 

 

4.2.1 Cyclic Voltammograms, Galvanic Cycles, Calculations 

 

The typical features of CVs with bare Al anodes were described previously in Ch. 4.1.1. 

Therefore this section will focus only on differences observed in the CV features of MC 

Al anodes relative to GF Al anodes. First we consider the partial cathodic scans between 

2 V and 0.25 V vs. Li+/Li reference electrode (Fig. 4-2-1). For the purposes of 

comparison the analogous GF Al anodes GF1 and GF4 from Ch. 4.1 are included. The 

bolded numbers 1 to 4 denote the GF1, MC1, MC2 and GF4 samples respectively (1 

hard, no oxide; 2 soft, no oxide; 3 soft, native oxide; 4 hard, native oxide). 
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Figure 4-2-1: Initial cyclic voltammograms of two soft MC Al anodes MC1 and 

MC2 prepared with varying degrees of surface oxide remaining. Comparative half-

hard GF Al anodes GF1 and GF4 from Ch. 4.1 are included. Partial cathodic scans 

from 2V to 0.25V to highlight SEI formation and lithiation onset behaviour. 

Samples GF1 (half-hard, oxide removed), MC1 (soft, oxide removed), MC2 (soft, 

native oxide) and GF4 (half-hard, native oxide) are in black (1), red (2), blue (3) and 

green (4)  respectively. 

 

Both MC Al samples show larger cathodic currents for the SEI formation. Sample MC1 

(oxide removed) shows a distinct reduction peak around 1.5V. This value is different 

from the peak of 1.0V in GF Al sample GF1 (oxide removed), which is the typical 

potential range observed for SEI formation on Al nanowires (1). Similar to what was 

observed in GF Al with native oxide (GF4) the MC Al anode with native oxide (MC2) 

shows a broader SEI formation with no apparent peaks and a larger cathodic current. 

Additional scanning in the CV will produce larger amounts of additional SEI formation 

for MC1 relative to GF1, with this formation further increased in MC2. Therefore, the 

SEI formation seems to be enhanced in the following order: half-hard<soft, oxide 

removed<soft, native oxide. The softening processing of MC Al should allow for a 
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greater degree of volume change relative to the strain-hardened GF Al, due to greater 

mobility of dislocations within the Al host (2). This allows for greater SEI formation in 

MC Al initially. Furthermore, one can expect a greater destruction of SEI in the 

delithiation scan for soft anodes (see below) leading to increased SEI formation in 

subsequent scans. Moving on, we observe that MC1 (MC Al, curve 2) shows a double 

lithiation onset plateau followed by a later onset potential relative to GF1 (GF Al, curve 

1). Additionally, the slope following the onset potential is considerably steeper for MC1, 

which suggests a greater degree of volume change for intermetallic phase formation in 

the MC Al anode. Increased oxide content in the MC Al (MC2) makes the onset appear 

earlier, which is consistent with the behaviour observed in the GF Al sample with native 

oxide (GF4). Additional scanning will produce a consistently later lithiation onset 

potentials in the CVs and steeper slopes for MC Al anodes relative to GF Al. 

 

Next we compare the full CV scans of all samples in Fig. 4-2-2. Both soft MC Al 

samples show well defined nucleation loops in the anodic scans. The loop size for MC Al 

in both MC1 and MC2 is considerably larger than GF Al in GF1. Like the steeper onset 

slope for MC1 and MC2 in Fig. 4-2-1 this suggests a greater degree of volume change for 

intermetallic phase formation for MC Al than GF Al. The delithiation peak potential is 

shifted positively in MC1 (soft) relative to GF1 (half-hard). Considering the later 

lithiation onset potential observed for MC1 relative to GF1 results in a larger overvoltage 

for soft MC Al. This is also seen in the larger overvoltage of the soft MC Al sample with 

native oxide MC2 relative to GF4 (half-hard). The delithiation peak of MC1 appears 

delayed and slanted towards the right relative to GF1. If the MC Al anode experiences 

larger volume changes than GF Al we would expect more time would be required for full 

delithiation. The native oxide version of soft MC Al (MC2) shows an even greater delay 

in the delithiation peak relative to MC1. This is consistent with half-hard GF Al samples 

GF4 relative to GF1 and again suggests that it is more difficult to extract lithium ions 

from the intermetallic phase that was formed in the presence of native surface oxide. At 

the same time, the formation of the new LiAl phase also requires a larger overvoltage 

both in hard and soft Al samples. However, the electrochemical performance and in 
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particular cyclability and reversibility of the lithiation-delithiation processes appeared to 

be better in samples without surface oxide.  

 

 

Figure. 4-2-2: Initial cyclic voltammograms of two soft MC Al anodes MC1 and 

MC2 prepared with varying degrees of surface oxide remaining. Comparative half-

hard GF Al anodes GF1 and GF4 from Ch. 4.1 are included. Full single scans with 

samples GF1 (hard, oxide removed), MC1 (soft, oxide removed), MC2 (soft, native 

oxide) and GF4 (hard, native oxide) are in black (1), red (2), blue (3) and green (4) 

colors, respectively.  

 

Shown in Fig. 4-2-3 are the features of a typical set of galvanic cycles for soft MC Al 

anode MC1 (oxide removed) at a current density of 0.25 mA/cm2 in red color, with the 

comparative cycle set of the half-hard GF Al anode GF1 (oxide removed) in black color. 

Overall we observe a similar sequence of events (denoted in the numbers 1 to 5) within 

the cycle set as described previously for GF Al anodes in Ch. 4.1, with single long and 

flat plateaus for both charge and discharge portions. There is slightly more curvature 

following the IR jump of MC1 before the discharge plateau is established as well as 
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visible sloping observed in this plateau. Both features indicate a greater change in the 

electrochemical kinetics and thus the overvoltage for MC1. Additionally, there are small 

differences observed in terms of plateau separation and the reversibility of the discharge 

plateau which will be discussed further in the next figures. 

 

 

Figure 4-2-3: Typical galvanic cycles for lithiation/delithiation of a soft MC Al 

anode (red curve). This is sample MC1 which was subjected to polishing and etching 

in alkaline conditions prior to electrochemical scans. Comparative half-hard GF Al 

anode GF1 (oxide removed) from Ch. 4.1 is also included (black curve). Numbers 

indicate the features of interest: (1) potential overshot (2) charge plateau (3) IR drop 

(4) discharge plateau (5) discharge tail. Galvanic cycles are shown at a current 

density of 0.25 mA/cm
2
.  

 

Shown in Fig. 4-2-4 are the set of galvanic cycles of soft MC Al anodes MC1 (oxide 

removed) and MC2 (native oxide) in red and blue colors respectively at a current density 

of 0.25 mA/cm2. The comparative cycle sets of the half-hard GF Al anodes GF1 and GF4 

are included in black and green colors respectively. In both soft MC Al anodes we 
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observe a very stable charging/discharging response, even though the reversibility of the 

discharge plateau is clearly impaired for the MC2 sample with native oxide (blue). 

Throughout the set MC1 (soft MC Al) has a lower charge plateau potential and larger 

plateau separation than GF1 (half-hard GF Al), consistent with the later lithiation onset 

potential and larger overvoltage seen in the CV (Fig. 4-2-2). Together these features 

suggest again that the softened mechanical properties of MC Al allow for a greater degree 

of volume change for intermetallic phase formation relative to half-hard GF Al.  

 

 

Figure 4-2-4: Galvanic cycles of two soft MC Al anodes MC1 and MC2 prepared 

with varying degrees of surface oxide remaining at a current density of 0.25 

mA/cm
2
. Comparative half-hard GF Al anodes GF1 and GF4 from Ch. 4.1 are 

included. Samples GF1 (hard, oxide removed), MC1 (soft, oxide removed), MC2 

(soft, native oxide) and GF4 (hard, native oxide) are in black, red, blue and green 

colors, respectively.  

 

This trend also appears to carry over to the native oxide versions of the two Al materials 

with soft MC2 consistently showing a larger plateau separation than half-hard GF4. 
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Shown in Fig. 4-2-5 are the first (a) and last (b) galvanic cycles for both MC Al and GF 

Al samples in this set. One can see that the softened mechanical properties of the MC Al 

initially decrease quite considerably the duration of the main discharge plateau and thus 

the coulombic efficiency (CE) relative to half-hard GF Al (Fig. 4-2-5 a). This effect is 

readily apparent in MC1 (soft) compared to GF1 (hard, both oxide removed) and is 

further amplified in the initial discharge peak shape of MC2 (native oxide). However, the 

differences in CE for MC1 relative to GF1 become less pronounced by the eighth cycle 

(Fig. 4-2-5 b). Here the end of the discharge appears very similar for MC2 relative to 

MC1 but the reversibility for MC2 remains poor. The evolution of the coulombic 

efficiencies with the cycle number is shown in Fig. 4-2-6 for the four current densities 

used. We observe that the initial CE of MC1 (soft, red curve) is again poor relative to 

GF1 (hard, black curve) but significantly improves over time, especially in the third set 

(Fig. 4-2-6 c). The native oxide soft sample MC2 show the worst performance in all 

cycles except those at the highest current density when all samples perform rather poorly 

(Fig. 4-2-6 d).  
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Figure 4-2-5: (a) First and (b) last galvanic cycles of two soft MC Al anodes MC1 

and MC2 prepared with varying degrees of surface oxide remaining at a current 

density of 0.25 mA/cm
2
. Comparative half-hard GF Al anodes GF1 and GF4 from 

Ch. 4.1 are included. Samples GF1 (hard, oxide removed), MC1 (soft, oxide 

removed), MC2 (soft, native oxide) and GF4 (hard, native oxide) are in black, red, 

blue and green colors, respectively. Cycles in the right figure have been offset to 

overlap the curves on the same time scale. 
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Figure 4-2-6: Coulombic efficiencies of two soft MC Al anodes MC1 and MC2 

prepared with varying degrees of surface oxide remaining at current densities of (a) 

0.13 (b) 0.25 (c) 0.5 and (d) 1 mA/cm
2
. Comparative half-hard GF Al anodes GF1 

and GF4 from Ch. 4.1 are included. Samples GF1 (hard, oxide removed), MC1 (soft, 

oxide removed), MC2 (soft, native oxide) and GF4 (hard, native oxide) are in black, 

red, blue and green colors, respectively.  

 

 

Overall these series of 4x8 galvanic cycles suggest that soft MC Al anodes in most cases 

showed worse performance both in terms of reversibility/coulombic efficiency and 

plateau separation relative to half-hard GF Al. This may be due to more pronounced 

volume changes and repeated significant destruction/pulverization of the intermetallic 

phase during the delithiation scan, which would be consistent with the increased SEI 

formation observed in the CVs of MC Al anodes (Fig. 4-2-1). This contrast again is 

likely related to the difference in mechanical properties (hardness) of the two materials. 
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However some brief conditioning at each current density allows for the formation of a 

more stable intermetallic phase and improved performance of MC Al by the eighth cycle 

(Fig. 4-2-6 a-d). While the presence of native oxide in MC Al (MC2) clearly has a strong 

detrimental effect on reversibility, there does appear to be a similar trend of improvement 

with cycling. There is also a considerable increase in performance with the removal of 

the oxide both with soft and half-hard Al (cf. MC2 and GF4, MC1 and GF1).  

 

To investigate the stability and cycling ability of the MC Al anodes, we performed a half-

cell failure experiment on a new sample MC3. The sample was prepared in the same way 

as "native oxide" sample MC2 described above. Considering the strong detrimental effect 

of increased oxide content on the reversibility for MC Al in the 4x8 cycles (Fig. 4-2-6 a-

c), we wanted to observe a worst-case scenario here of drastic CE changes over time. As 

in the GF Al anode half-cell failure experiment in Ch. 4.1 no prior electroformation of the 

LiAl phase was performed using either a CV or galvanic cycles at low current densities. 

The cycling was commenced immediately at a high current density of 0.5 mA/cm2 for a 

total of 264 cycles. This current density is equivalent to that of the third set of cycles in 

the 4x8 experiments.  

 

Shown in Fig. 4-2-7 is the full set of the corresponding galvanic cycles. One can see that 

the cycling behaviour is highly unstable compared to the similar experiment with half-

hard GF Al (GF5) (Fig. 4-1-8). Here the plateau potential jumps occur with significantly 

larger amplitude and higher frequency. Before each jump the overvoltages both in the 

charging and discharging plateaus markedly increase so that the charge potential even 

drifts well below 0 V vs. Li+/Li. Fig. 4-2-8 shows the first two and last two cycles in 

black and red, respectively. Arrows in the red curve indicate the secondary and tertiary 

plateaus appearing over time in the discharge portion of the cycle, which were also 

observed with cycling of GF Al earlier in Ch. 4.1 (Fig. 4-1-9) and have been attributed to 

the diffusion-controlled delithiation of the α-LiAl intermetallic phase. One can see that 

the sample performance significantly deteriorated with cycling. Not only the reversibility 

of the charging-discharging processed got significantly lower, but also the overvoltages 

of the charging-discharging processes increased as well. The first red curve also shows 
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the instance of a potential jump, as indicated with an arrow. To further characterize the 

performance of the sample, the separation between the charge plateau and the main 

discharge plateau is plotted in Fig. 4-2-9, together with the coulombic efficiencies of the 

main as well as the secondary and tertiary discharge plateaus shown in Fig. 4-2-10 and 

Fig. 4-1-11 respectively for every fifth cycle starting from the first cycle. Additionally, 

the figures also show the data for cycles right before and after the potential jumps 

observed within the cycle set. We did not observe the secondary diffusion plateau until 

approximately the 25th cycle. Therefore the secondary process CE is absent within that 

initial region of Fig. 4-2-11. For the sake of comparison, the data from the half-hard GF 

Al half-cell failure experiment (GF5, oxide-removed) from Ch 4.1 are included in black 

color in both Fig. 4-2-9 and Fig. 4-2-10, with the new soft MC3 data appearing in blue 

color.  

 

 

 

Figure 4-2-7: Full set of galvanic cycles for the MC3 soft MC Al anode with native 

oxide subjected to 264 cycles at a current density of 0.5 mA/cm
2
 without an initial 

CV.  
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Figure 4-2-8: First two (black) and last two (red) galvanic cycles for the MC3 soft 

MC Al anode with native oxide subjected to 264 cycles at a current density of 0.5 

mA/cm
2
 without an initial CV. Numbers in the red curve denote the secondary and 

tertiary diffusion-limited plateaus. The red curve has been offset to overlap with the 

time scale of the black curve. 
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Figure 4-2-9: Charge-Discharge plateau separation (blue curve) for the main 

discharge plateau for MC3 soft MC Al anode with native oxide subjected to 264 

cycles at a current density of 0.5 mA/cm
2
 without an initial CV. For comparison, 

data for half-hard GF5 GF Al anode (oxide removed) from Ch. 4.1 are included in 

black. Plateau jump events in MC3 are indicated with arrows.  
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Figure 4-2-10: Coulombic efficiency data for the main discharge plateau (blue 

curve) for MC3 soft MC Al anode with native oxide subjected to 264 cycles at a 

current density of 0.5 mA/cm
2
 without an initial CV. For comparison, data for half-

hard GF5 GF Al anode (oxide removed) from Ch. 4.1 are included in black. Plateau 

jump events in MC3 are indicated with arrows.  
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Figure 4-2-11: Coulombic efficiencies for the secondary (black) and tertiary (red) 

diffusion-limited discharge plateaus for MC3 soft MC Al anode with native oxide 

subjected to 264 cycles at a current density of 0.5 mA/cm
2
 without an initial CV. 

 

 

The very first cycle for the MC3 MC Al soft sample shows a large plateau separation of 

0.935 V with a main CE of 73% (Fig. 4-2-9, 4-2-10). Upon closer examination the 

tertiary plateau has already appeared during discharge with about 2% CE (Fig. 4-2-8 a), 

though it may be difficult to see in the figure presented here. Progressing towards the 

fifth cycle there is a considerable shortening of the main plateau. This results in the main 

CE plummeting down to only 57% while the tertiary CE spikes up to a set maximum of 

7%, even though the plateau separation decreases to 0.86V at this point (Fig. 4-2-9, 4-2-

10, 4-2-11). Moving from the 5th to the 10th cycle, we see a sharp reversal of the main 

CE back up to 85%, partially driven by a drop in the tertiary CE down to 4% (Fig. 4-2-

10, 4-2-11). Between the 10th and 20th cycles we encounter a very interesting feature 

(Fig. 4-2-7). Rather than being terminated by the upper limit the discharge peak reaches 

the full time constraint of 1000 s (equivalent to the 1000 s duration of the charging 

cycle). Therefore, the principal CE reaches a maximum value for the whole set at 89% 

with a plateau separation around 0.9V (Fig. 4-2-9, 4-2-10). This improvement is due to a 
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longer main plateau rather than a smaller charge associated with the diffusion-controlled 

processes because the CE of the tertiary plateau stays constant at around 3-4% (Fig. 4-2-

11). The parallel appearance of a maximum principal CE and a minimum in the main 

plateau separation in MC3 is consistent with the similar behaviour for half-hard GF5.  

 

Following the 25th cycle, a number of related trends begin to develop (Fig. 4-2-7). The 

secondary diffusion-limited plateau appears around 1.55V soon after the main plateau, 

with an initial CE of 2% (Fig. 4-2-11). This process will steadily grow to a maximum CE 

of almost 10% by the end of the set highlighting the structural changes at the electrode. 

This is noticeably higher than the maximum secondary process CE of 7% in half hard 

GF5 (GF Al), which is likely related to the larger capability for the volume changes due 

to intermetallic phase formation in MC Al anodes. After the 15th cycle the main CE of 

soft MC Al MC3 shows a constant steady drop accompanied by a continuous increase in 

the plateau separation (Fig. 4-2-9, 4-2-10, 4-2-11). The trends for diminishing the CE and 

increasing the separation are considerably faster for the soft MC3 than those observed 

within the same cycle region for the half-hard GF5. The downward curvature in the 

charging plateau for MC3 also becomes far more severe as it drifts negative below 0V. 

The main discharge plateau shifts positive over time and so do the potentials of the 

secondary and tertiary plateaus. By the 25th cycle the potential of the tertiary plateau 

reaches the cycle upper potential limit of +2.7V. Therefore the CE of this tertiary process 

drops to a value of 2-3% where it stays until we encounter the plateau jumps (Fig. 4-2-

11).  

 

By the 79th cycle the plateau separation for MC3 has increased to 1.82V. At the 80th 

cycle we observe the first jump in the plateau potentials (Fig. 4-2-9). Immediately 

following the jump the plateau separation resets to a smaller value of 1.08V and the 

charge plateau itself appears flat again. The principal CE also starts to improve. The 

diffusion plateau potentials shift downwards after the jump and we observe a local 

maximum of 5% for the tertiary CE as the process has a longer duration before being 

terminated by the upper limit (Fig. 4-2-11). However, in the other respects, the overall 

peak shape and width appeared fairly similar before and after the jump. After the jump 
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the MC3 system appears to briefly stabilize and improve. From the 80th to the 85th cycle 

the main CE increases to 79% with the plateau separation showing a small change to 

1.1V (Fig. 4-2-9, 4-2-10). However, this effect is only temporary and soon again the 

same degradation trends continue. Approaching the 111th cycle the main CE has dropped 

to 73% and we observe a second plateau jump (Fig. 4-2-9). Once again the plateau 

separation resets to a smaller value of 1.01V and soon begins to increase again by the 

115th cycle. As before the system briefly improves with the main CE increasing to 76% 

by the 120th cycle (Fig. 4-2-10). The third jump is then seen in the 138th cycle (Fig. 4-2-

9). In comparison the GF Al failure anode GF5 only experienced two plateau jumps by 

the end of 140 cycles with far less severity and a main CE that was relatively unchanged 

during those events. We encounter six further plateau jumps in the set of 264 cycles for 

MC3, which become separated by progressively shorter intervals with increased severity 

in both the CE and plateau separation trends. The result is a set of cycles that look like a 

Christmas tree shape (Fig. 4-2-7). Throughout these plateau jumps the secondary process 

CE continues to climb while the tertiary contribution continues to show local maxima at 

each jump (Fig. 4-2-11). By the 264th cycle the main CE has dropped down to 62% from 

a set maximum of 89% with a plateau separation here of almost 1.7V (Fig. 4-2-9, 4-2-

10).  

 

The origin of these trends is likely to be systematic large scale cracking and removal of 

portions of the intermetallic structure from the surface of the Al anode as the stress of 

repeated lithiation/delithiation volume changes accumulates. This process is referred to as 

'pulverization' of active material in the literature and is thought to be the dominant 

capacity loss mechanism for Al and other metal-alloying anodes [3]. As the mechanical 

stresses of cracks and voids accumulate there are ever greater driving forces required for 

lithiation/delithiation until a critical point is reached where a portion of the active 

material with the most accumulated stresses is broken into smaller pieces and removed 

from the electrode surface. This results in temporary improvements in the anode 

performance (the jump). Comparison between the MC3 (MC Al, native oxide) and GF5 

(GF Al, oxide removed) samples suggests that the pulverization mechanism is far more 

severe in soft Al anodes. The softened mechanical properties of the MC Al allow for a 
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greater degree of volume change due to easier intermetallic phase formation relative to 

harder GF Al, as seen in the increased SEI formation, larger CV overvoltage, larger CV 

loop and increased cycle plateau separation (Figs. 4-2-1 to 4-2-4). At first, this process is 

favourable as suggested by a superior early performance of soft MC3 (CE of 89% relative 

to the maximum of 73% in GF5). However, this effect is short lived as the cycling 

continues and the stresses start to accumulate. In the end these softened mechanical 

properties exacerbated by the increased surface oxide content likely lead to impaired 

mechanical stability for MC Al against pulverization. If an MC Al anode prepared 

without surface oxide was cycled continuously at this current density we would still 

expect the performance degradation to be more severe than GF5, though the results could 

be more gradual than for MC3. The relation of the mechanical properties and capacity 

loss mechanisms in Al anodes will be further discussed in Ch. 5. 

 

4.2.2 SEM images 

 

Shown in Fig. 4-2-12 a-f are SEM images of the uncycled (a-b) and cycled areas (c-f) of 

the soft MC Al anodes MC1 (oxide removed) and MC2 (native oxide) after being 

subjected to the 4x8 experiments. Sample MC1 prepared with full oxide removal (Fig. 4-

2-12 c+e) appears to have a cycled porous morphology that is more heterogeneous than 

the analogous half-hard GF Al anode GF1 (oxide removed) described in Ch. 4.1.2. 
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Figure 4-2-12: SEM images of uncycled (a, b) and cycled (c-f) areas for soft MC Al 

anodes MC1 (oxide removed) (a,c,e) and MC2 (native oxide) (b,d,f) after being 

subjected to 4x8 experiments. Magnifications of (a-b) 10000x; (c-d) 1000x; (e-f) 

10000x. 
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There are numerous small cracks dispersed around the intermetallic material in this 

cycled area together with larger void size. Collectively these features reinforce a larger 

degree of volume change occurring in the soft MC Al anode compared to half-hard GF 

Al when prepared and cycled under identical conditions. The uncycled area of MC1 

reveals the pattern typical for etched surfaces. It shows coarser larger grain sizes 

consistent with aluminium softened by thermal annealing (Fig. 4-2-12 a). Sample MC2 

with the original native oxide retained appears to take this trend even further. The cycled 

area has increased heterogeneity with even more cracking evident throughout the 

structure. (Fig. 4-2-12 d+f). As expected the uncycled area is also much rougher than 

MC1 with no etching pattern visible (Fig. 4-2-12 b).  

 

Cycling the MC3 MC Al anode towards failure creates a multilayered structure with what 

appears to be a crust (Fig. 4-2-13 a-c). There are long cracks dispersed among this 

structure with multiple voids of various sizes. This is in sharp contrast to the GF5 GF Al 

failure sample described in Ch. 4.1.2, which showed a fairly homogenous porous 

morphology broken into several large pieces. However it is important to note that the MC 

Al failure sample here was prepared without removal of native oxide. The crust present in 

this multilayer structure of MC3 may be due to intermetallic debris being released into 

the electrolyte solution due to pulverization of the active material observed in the 

galvanic cycles (Fig. 4-2-7). We did visually observe that such debris could readily 

separate from the cycled area into the solution when removing the MC3 anode from the 

cell after the galvanic cycles were completed. 
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Figure 4-2-13: SEM images of cycled area for soft MC Al anode with native oxide 

MC3 after being subjected to 264 cycles at a current density of 0.5 mA/cm
2
 without 

an initial CV. Magnifications of (a) 100x (b) 1000x (c) 10000x. 

 

 

4.2.3 EDX Composition Chart 

 

Shown in Table 4-2-14 is the EDX composition chart of uncycled and cycled areas of the 

two soft MC Al anodes MC1 and MC2 after being subjected to the 4x8 experiments as 

well as the soft MC Al anode MC3 after being subjected to 264 cycles at a current 

density of 0.5 mA/cm2. The predominance of Al within the uncycled area indicates 

unreacted aluminium substrate with surface contamination by the electrolyte (a,c,e). 

Carbon and oxygen content should arise from a combination of trace propylene carbonate 
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and residual surface oxide present after the various electrode preparations. Trace 

phosphorus and fluorine contents should arise from LiPF6 salt remaining after rinsing. 

The small amount of silicon detected in all samples likely originates from a combination 

of silicon carbide paper used for polishing, and as an impurity commonly found in Al 

1100 alloys. Lithium cannot be detected due to the overlap of its low energy X-rays with 

the baseline peak close to 0 eV. Less than one percent of Mg is detected in the spectra of 

both MC Al samples (a,c). This element was absent in the EDX spectra of all GF Al 

samples in Ch 4.1.3 (Fig. 4-1-15). These are both Al 1100 alloy materials and the Mg 

here is a trace amount. Therefore the differences observed in the electrochemistry of 

these two materials should still be based on the mechanical properties. The native oxide 

presence in sample MC2 results in a similar composition with higher oxygen content 

within the uncycled area (c). Again the minor increase in oxygen content for MC2 should 

be due to the 7 kV voltage mostly profiling the Al core below the crystalline oxide.  
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Table 4-2-14: EDX composition chart of uncycled and cycled areas of two MC Al 

anodes MC1 (oxide removed) and MC2 (native oxide) after being subjected to 4x8 

experiments and MC Al anode with native oxide after being subjected to 264 cycles 

at a current density of 0.5 mA/cm
2
 (MC3). Spectra were collected at a column 

voltage of 7 kV for 50 seconds at 1000x magnification.  

 

 Atomic %  

Sample Area C  O  F  Mg  Al  Si  P  

MC1  (a)Uncycled  1.74  1.42  0.32  0.66  95.15  0.68  0.04  

 (b)Porous  4.89  32.95  28.54  0.39  32.16  0.42  0.65  

MC2  (c) Uncycled  1.93  3.83  0.27  0.63  92.77  0.60  0.03  

 (d)Porous  4.94  28.35  25.75  0.37  37.89  2.18  0.51  

MC3  (e) Uncycled  1.73  1.18  0.22  0.69  95.54  0.54  0.10  

 (f) Porous  2.20  8.62  62.96  0.09  24.06  0.83  1.24  

 

 

The cycled porous area of MC1 shows significantly elevated carbon, oxygen and fluorine 

content (b). This is likely due to the presence of electrolyte within the intermetallic 

structure, as well as the products of solvent electroreduction and salt decomposition in the 

SEI layer (5). The cycled porous area of MC1 shows a nearly identical composition to GF 

Al sample GF1 described earlier (d). When pushed towards failure the MC3 anode 

resembles the cycled composition of MC1 but with dramatically higher F:O and F:Al 

ratios in both counts and percentages (f). Considering the LiPF6 salt this fluorine content 

should predominantly come from the electrolyte. However it is not clear in what form 

does this elevated fluorine content exist within the systematically cracked intermetallic 
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structure. As described in the CVs of MC1 and MC2 the continued lithiation/delithiation 

of MC Al will cause some degree of additional SEI formation beyond the first cycle. 

With sustained cycling in MC3 mechanical stresses will accumulate in the form of 

cracking. This will continuously cause partial destruction of the SEI present within the 

structure and expose fresh Al material for more SEI formation. The LiPF6 salt is also 

expected to thermally degrade over time into LiF and PF5 if any trace moisture content is 

present [6]. 
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4.3 Bare Duraluminum (Dural) Anodes, Al 2024 alloy, Heat-

Treated 

 

Summary 

 

In Ch. 4.2 we investigated the effects of mechanical properties on lithiation/delithiation 

behaviour using McMaster-Carr Al (MC Al) (dead-soft) anodes compared to Goodfellow 

Al (GF Al) (half-hard) anodes. Here in Ch. 4.3 we take the study of the mechanical 

properties even further by using as an electrode material Duraluminum (Dural) with the 

native oxide removed. Dural is an Al 2024 alloy with 93% Al, 4-5% Cu and 1-2% Mg 

content manufactured through heat-treated precipitation hardening. The result is that 

Dural is considerably harder in terms of plastic deformations than any Al 1100 alloy 

material including MC and GF Al described in Chapters 4.1 and 4.2. The preparation of 

the Dural sample (DU1) used in this sub-chapter was described previously in the 

experimental details of Ch. 3. In particular, sample DU1 had the native surface oxide 

removed by polishing followed by etching in acidic solution. This sample was 

characterized electrochemically in a 4x8 experiment, which begins with a cyclic 

voltammogram (CV) for three scans, followed by four sets of eight galvanic cycles at 

progressively higher current densities. Overall we observed several features consistent 

with higher resistance against lithiation/delithiation in Dural, possibly due to the 

precipitated copper content within the alloy. In the initial CV this behaviour appeared as 

a larger overvoltage relative to both GF Al and MC Al anodes. In the galvanic cycles this 

behaviour appeared as a larger plateau separation as well as noticeably poorer coulombic 

efficiency (CE) at lower current densities. Surface analysis of sample DU1 after 

electrochemistry revealed increased heterogeneity in the porous intermetallic structure 

relative to GF Al and MC Al anodes with multiple areas of limited reactivity. An 

additional sample (DU2) of the same type as DU1 was characterized electrochemically in 

a failure experiment, in which galvanic cycling of the anode begins immediately at a 

higher current density without initial conditioning through a CV. This cycling was 

sustained for 300 cycles to observe the anode performance over time. Severe diffusion-
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limited losses of coulombic efficiency (CE) relative to GF Al and MC Al anodes were 

observed, in an otherwise relatively stable charging/discharging response with few 

plateau jumps. Surface analysis revealed a fully reactive anode material with no evidence 

of systematic cracking characteristic of pulverization. The results show that the 

degradation behaviour observed with MC and GF Al and described in Ch. 4.1 and 4.2 is 

indeed related to the mechanical properties of materials. However, the presence of Mg 

and Cu in the Dural alloy seems to be quite detrimental for the lithiation-delithiation 

processes; therefore, Dural was dismissed as a potential candidate for Al-based anodes 

for Li-ion batteries. 

 

4.3.1 Cyclic Voltammograms, Galvanic Cycles, Calculations 

 

The typical features of CVs with Al anodes were described previously in Ch. 4.1.1. 

Therefore, this section will focus only on differences observed in the CV features of 

Dural anodes relative to half-hard GF Al and soft MC Al anodes. First we consider the 

partial cathodic scans between 2V and 0.25V vs. Li+/Li reference electrode (Fig. 4-2-1). 

For the purposes of comparison the data for analogous GF Al and MC Al anodes GF1 

and MC1 with the native oxide removed from Ch. 4.1 and 4.2 are included. The bolded 

numbers 1 to 3 denote the GF1 (hard, oxide removed), MC1 (soft, oxide removed) and 

DU1 (Dural, oxide removed) samples respectively.  
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Figure 4-3-1: Initial cyclic voltammogram of Dural anode DU1 prepared with oxide 

removed (curve 3, blue). Comparative data for half-hard GF1 GF Al (curve 1, 

black) and soft MC1 MC Al (curve 2, red) anodes from Ch. 4.1 and 4.2 are also 

included. Partial cathodic scans from 2V to 0.25V to highlight SEI formation and 

lithiation onset behaviour.  

 

Dural (DU1, blue curve 3) shows a cathodic current for SEI formation that is comparable 

to half-hard GF Al (GF1, black curve 1) but noticeably less than soft MC Al (MC1, red 

curve 2). This SEI formation appears broadened with no distinct reduction peaks 

observed before the onset of lithiation. The absence of reduction peaks in Dural may be 

related to the alloying Cu and Mg elements. Further CV scans produce additional SEI 

formation for DU1 that is intermediate between that of GF1 and MC1. Moving on, we 

observe that Dural (curve 3) shows a significantly later onset relative to both GF Al 

(curve 1) and MC Al (curve 2). This large difference is likely due to the increased driving 

force required for lithiation of Dural. As described previously, Cu in Dural primarily 

precipitates at the grain boundaries where lithiation should begin. Since the Cu content is 

inert towards lithiation [1], it should increase the resistance of the anode to lithiation of 

Al and formation of an intermetallic phase. The onset slope of Dural appears similar to 

MC Al but steeper than GF Al. Further scanning produces consistently later lithiation 
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onset potentials in the CV for Dural relative to GF Al and MC Al with a slope 

comparable to MC Al. 

 

Next we compare the full CV scans of all samples in Fig. 4-3-2. Dural shows well 

defined nucleation loops in the anodic scan with the size comparable to soft MC Al.  

 

 

 

 

Figure 4-3-2: Initial cyclic voltammogram of Dural anode DU1 (blue, curve 3) 

prepared with oxide removed. Comparative data for half-hard GF1 GF Al (black, 

curve 1) and soft MC1 MC Al (red, curve 2) anodes from Ch. 4.1 and 4.2 are also 

included.  

 

 

The delithiation peak potential is shifted positively in DU1 (Dural) relative to GF1 (GF 

Al). This suggests that the overvoltage for the lithiation process is considerably larger for 

Dural compared to half-hard GF Al. While the delithiation peak potential of DU1 is 

similar to that for soft MC Al MC1, the MC1 anode still has an earlier lithiation onset 
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potential. Therefore, Dural has a larger overvoltage relative to soft MC Al as well, 

although the difference is smaller. As is the case with the lithiation onset potentials, the 

increased overvoltages here suggest increased resistance against lithiation resulting from 

inert Cu precipitates at the grain boundaries.  

 

Shown in Fig. 4-3-3 are the typical features of galvanic cycles for the Dural anode DU1 

(blue color) and the half-hard GF Al anode GF1 (black color) at a current density of 0.25 

mA/cm2. Overall we observe a similar sequence of events (denoted in the numbers 1 to 5) 

as was described previously in Ch. 4.1 and 4.2. Dural shows increased downward and 

upward curvature in charge and discharge plateaus respectively, with significantly more 

curvature also appearing immediately following the IR jump. These features indicate 

pronounced changes in the electrochemical kinetics with Dural. Additionally, there are 

considerable differences in terms of plateau separation and the reversibility of the 

charging-discharging processes, which are presented in detail in the next figures. 
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Figure 4-3-3: Typical galvanic cycles for lithiation/delithiation of a Dural anode 

(blue curve). This is sample DU1 which was subjected to polishing and etching in 

acidic conditions prior to electrochemical scans. Comparative data for half-hard GF 

Al anode GF1 from Ch. 4.1 are also included (black curve). Numbers indicate the 

features of interest: (1) potential overshot (2) charge plateau (3) IR drop (4) 

discharge plateau (5) discharge tail. Galvanic cycles are shown at a current density 

of 0.25 mA/cm
2
.  

 

 

Shown in Fig. 4-3-4 are the set of galvanic cycles for the Dural anode DU1 (blue) at a 

current density of 0.25 mA/cm2. The comparative cycle sets of the half-hard GF Al and 

soft MC Al anodes GF1 and MC1 are included in black and red colors respectively. For 

Dural, we observe a stable charging/discharging response, even though the reversibility 

of the main discharge plateau is worse. Throughout the set, Dural has a significantly 

lower charge plateau potential and much larger plateau separation than both GF1 (half-

hard GF Al) and MC1 (soft MC Al), consistent with the later lithiation onset potential 

and larger overvoltage seen in the CV (Fig. 4-3-2). Furthermore, the charge plateau of 
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DU1 Dural has increasing downward curvature unlike the flat shape of GF1 and MC1. 

Taken together, these features suggest again that the presence of inert Cu in Dural 

significantly increases its resistance to lithiation-delithiation as compared to the same 

processes in Al 1100 materials. This results in increased contribution of diffusion-limited 

processes, which is clearly seen in the discharge peak shape. 

 

 

 

 

Figure 4-3-4: Galvanic cycles for Dural DU1 anode (blue) prepared with oxide 

removed at a current density of 0.25 mA/cm
2
. Comparative data for half-hard GF1 

GF Al (black) and soft MC1 MC Al (red) anodes from Ch. 4.1 and 4.2 are also 

included.   

 

Shown in Fig. 4-3-5 is the comparison of the first (a) and last (b) galvanic cycles for 

these three samples in this set. One can see that the presence of alloying elements in 

Dural initially decreases significantly the duration of the main discharge plateau and thus 

the coulombic efficiency (CE) relative to both half-hard GF Al and soft MC Al (Fig. 4-3-

5 a). The effect is severe enough for the diffusion-limited discharge plateaus (indicated 

with arrow) to appeared as early as in the second set of cycles in a 4x8 experiment. In 
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comparison, GF1 (half-hard) and MC1 (soft) samples will not show diffusion-limited 

discharge plateaus until the third or fourth sets. By the eighth cycle, the discharge peak 

shapes become comparable but the discharge plateau of DU1 remains shorter (Fig. 4-3-5 

b). The evolution of the coulombic efficiencies with the cycle number is shown in Fig. 4-

3-6 for the four current densities used. One can see that the CE of DU1 (Dural, blue 

curve) is the worst among all samples at all current densities except the highest one, 

where all samples performed rather poorly, but significantly improves over time similar 

to the trend for MC1 (MC Al, red curve) (Fig. 4-3-6 c).  

 

 

 

 

Figure 4-3-5: (a) First and (b) last galvanic cycles of Dural anode DU1 (blue) 

prepared with oxide removed at a current density of 0.25 mA/cm
2
. Comparative 

data for half-hard GF Al (black) and soft MC Al (red) anodes GF1 and MC1 from 

Ch. 4.1 and 4.2 are also included. Cycles in the right figure have been offset to 

overlap the curves on the same time scale. Arrow indicates appearance of diffusion-

limited discharge plateau in DU1.  
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Figure 4-3-6: Coulombic efficiencies for Dural anode DU1 (blue) prepared with 

oxide removed at current densities of (a) 0.13 (b) 0.25 (c) 0.5 and (d) 1 mA/cm
2
. 

Comparative data for half-hard GF Al (black) and soft MC Al (red) anodes GF1 

and MC1 from Ch. 4.1 and 4.2 are also included.  

 

To investigate the stability and cycling ability of the Dural anode, we performed a half-

cell failure experiment on a new sample DU2. The sample was prepared in the same way 

as "oxide removed" sample DU1 used for the 4x8 experiment. We chose an oxide-free 

preparation for DU2 to have a clear comparison of mechanical stability and lithiation-

delithiation behaviour under continuous cycling relative to the oxide-free GF Al failure 

anode GF5 from Ch 4.1 (Fig. 4-1-8). As in the previous half-cell failure experiments 

described in Ch. 4.1 and 4.2, no prior electroformation of the LiAl phase was performed 

using either a CV or galvanic cycles at low current densities. The cycling was 

commenced immediately at a high current density of 0.5 mA/cm2 for a total of 300 
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cycles. This current density is equivalent to that of the third set of cycles in the 4x8 

experiment.  

 

Shown in Fig. 4-3-7 is the full set of the corresponding galvanic cycles. One can see that 

the cycling behaviour is relatively stable compared to half-hard GF Al (Fig. 4-1-8) and 

soft MC Al (Fig. 4-2-7) anodes. There is only one plateau potential jump observed early 

around 120000 sec with the charge plateau potential not drifting below 0V vs. Li+/Li until 

much later around 400000 sec. Approaching the 500000 sec region and beyond there is 

noticeable degradation of cycling stability, possibly indicating the usable limit for cycling 

of Dural under these conditions. Fig. 4-3-8 shows the first two and last two cycles in 

black and red respectively. Arrows in the red curve indicate the secondary and tertiary 

plateaus appearing over time in the discharge portion of the cycle, which were also 

observed with cycling of GF Al in Ch. 4.1 (Fig. 4-1-9) and MC Al in Ch. 4.2 (Fig. 4-2-

8), and have been attributed to the diffusion-controlled delithiation of the α-LiAl 

intermetallic phase. To further characterize the performance of the sample, the separation 

between the charge plateau and the main discharge plateau is plotted in Fig. 4-3-9 for 

every fifth cycle, together with the coulombic efficiencies of the main as well as the 

secondary and tertiary discharge plateaus shown in Fig. 4-3-10 and Fig. 4-3-11, 

respectively . Additionally, the figures also show the data for cycles right before and after 

the potential jumps observed within the cycle set. For DU2 we did not observe the 

secondary diffusion plateau until approximately the 25th cycle. Therefore the secondary 

process CE is absent within that region of Fig. 4-3-11. For the sake of comparison, the 

data for the half-hard GF Al half-cell failure experiment (GF5) from Ch. 4.1 and soft MC 

Al half-cell failure experiment (MC3) from Ch. 4.2 are included in black and blue colors 

respectively in both Fig. 4-3-9 and Fig. 4-3-10, with the new DU2 (Dural) data in yellow. 
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Figure 4-3-7: Full set of galvanic cycles for the DU2 Dural anode prepared with 

oxide removed and subjected to 300 cycles at a current density of 0.5 mA/cm
2
 

without an initial CV. 
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Figure 4-3-8: First two (black) and last two (red) galvanic cycles for the DU2 Dural 

anode prepared with oxide removed and subjected to 300 cycles at a current density 

of 0.5 mA/cm
2
 without an initial CV. Numbers in the red curve denote the secondary 

and tertiary diffusion-limited plateaus. The red curve has been offset to overlap 

with the time scale of the black curve.  
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Figure 4-3-9: Charge-Discharge plateau separation (yellow curve) for the main 

discharge process for DU2 Dural anode prepared with oxide removed and subjected 

to 300 cycles at a current density of 0.5 mA/cm
2
 without an initial CV. For 

comparison, the data for half-hard GF5 GF Al (black) and soft MC3 MC Al (blue) 

anodes from Ch. 4.1 and 4.2 are included. The plateau jump events in DU2 are 

indicated with arrows.  

 

 

 

 

 

 

 

 

 



www.manaraa.com

148 

 

 

 

 

 

 

 

Figure 4-3-10: Coulombic efficiency data for the main discharge plateau (yellow 

curve) for DU2 Dural anode prepared with oxide removed and subjected to 300 

cycles at a current density of 0.5 mA/cm
2
 without an initial CV. For comparison, the 

data for half-hard GF5 GF Al (black) and soft MC3 MC Al (blue) anodes from Ch. 

4.1 and 4.2 are included. The plateau jump events in DU2 are indicated with arrows.  
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Figure 4-3-11: Coulombic efficiencies for the secondary (black) and tertiary (red) 

diffusion-limited discharge plateaus for DU2 Dural anode (oxide removed) and 

subjected to 300 cycles at a current density of 0.5 mA/cm
2
 without an initial CV.  

 

The very first cycle for the DU2 Dural sample shows a plateau separation of 1.06V with a 

main CE of only 29% (Fig. 4-3-9, 4-3-10). Upon closer examination the tertiary plateau 

has already appeared during discharge with about 3% CE (Fig. 4-3-8 a). The reversibility 

of DU2 rapidly improves by the fifth cycle to a separation of 1.01V and main CE of 57% 

with the tertiary process CE also increasing to 4% (Fig. 4-3-9, 4-3-10, 4-3-11). 

Progressing from the 5th to the 20th cycle, we observe another large improvement in 

main CE, reaching a maximum for the whole set at 71% with the plateau separation 

remaining small around 1.02V. This large improvement between the first and 20th cycles 

is driven by a significant increase in the length of the main plateau rather than that 

associated with the diffusion-controlled processes. In fact, the tertiary CE remains 

relatively unchanged around 3% by the 20th cycle (Fig. 4-3-11). At the 25th cycle the 

secondary diffusion-limited plateau appears at 1.74V soon after the main plateau, with an 

initial CE of 2% (Fig. 4-3-11). This diffusion-limited process will steadily grow to a 

maximum efficiency of 15% by cycle 90. The maximum efficiency of this secondary 

process is considerably higher than the value of 8% observed in the half-hard GF Al 
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failure anode (GF5, oxide removed) (Fig. 4-1-12). This illustrates again how the 

reversibility of Dural suffers from the presence of alloying elements like copper, similar 

to what was observed in the 4x8 experiment (Fig. 4-3-5, 4-3-6). It is the presence of this 

secondary process growing rapidly over time that will directly contribute to the overall 

poor main CE of Dural DU2. From the 25th cycle onwards, the main CE shows a 

constant steady drop accompanied by a continuous increase in the plateau separation 

(Fig. 4-3-9, 4-3-10). The downward curvature of the charge plateau becomes 

progressively more severe but the potential will not go below 0V until the 235th cycle 

(Fig. 4-3-7). The main discharge plateau shifts positive over time and so do the potentials 

of the secondary and tertiary plateaus. By the 25th cycle the potential of the tertiary 

plateau reaches the cycle upper potential limit of +2.65V. Therefore the fitted CE of this 

tertiary process drops to a value of 2% where it stays until we encounter the first plateau 

jump (Fig. 4-3-11).  

 

By the 66th cycle the plateau separation increases to 1.48V with the main CE dropping 

down to 58% (Fig. 4-3-9, 4-3-10). At the 67th cycle we observe the first jump in the 

plateau potentials. Immediately following the jump the plateau separation resets to a 

smaller value of 1.00V and the charge plateau itself appears flat again. The diffusion 

plateau potentials also shift downwards after the jump and we observe a local maximum 

of 4% for the tertiary CE as the process has a longer duration before being terminated by 

the upper limit of the potential (Fig. 4-3-11). However, in the other respects, the overall 

peak shape and width appeared fairly similar before and after the jump. After the jump 

the Dural (DU2) system appears to briefly stabilize in its degradation but does not show 

the temporary improvements observed after jumps in soft MC Al (MC3) (Fig. 4-3-10). 

From the 67th to the 70th cycle the main CE will remain around 58% with the plateau 

separation unchanged at 1.00V (Fig. 4-3-9, 4-3-10). From the 70th to the 90th cycle the 

same degradation trends continue. At the 90th cycle we reach the worst cycle of the entire 

set with a maximum of 15% for the secondary CE and a minimum of 52% for the main 

CE (Fig. 4-3-10, 4-3-11). From the 90th to the 100th cycle the main CE improves to 58% 

with the secondary CE dropping to 12%. This is unusual given that there is no plateau 

jump apparent anywhere in this region of the figure for plateau separation (Fig. 4-3-9). 
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From the 100th to the 150th cycle and up to the 250th cycle we encounter an interesting 

region of stability (Fig. 4-3-9). The plateau separation remains at a smaller value around 

1.2V and increases very slowly, only accelerating beyond the 200th cycle. The main CE 

gradually improves to 60% with the secondary efficiency decreasing to 10%, (Fig. 4-3-

10, 4-3-11). Onwards from the 250th cycle the reversibility begins to degrade again, 

accompanied by  the sharp downward curvature of the charge plateau below 0V (Fig. 4-

3-7). This degradation is not due to increasing contribution of the secondary process as its 

CE continues to decrease to 8% (Fig. 4-3-11). Even with the plateau separation 

approaching almost 2V by now the system will not show another noticeable plateau jump 

until close to the 300th cycle (Fig. 4-3-9). Here we see a temporary improvement 

between the 295th and 300th cycle, which would likely be very brief. If we continued 

cycling, we would fully expect the plateau separation to increase well above  2V with the 

main CE dropping below 50%, even though the diffusion-related efficiencies are clearly 

not increasing anymore. 

 

The origin of these trends is again likely to involve systematic large scale “pulverization” 

of a portion of the intermetallic structure from the anode surface as the stress of repeated 

lithiation/delithiation volume changes accumulates [2]. This process has been already 

discussed in Ch. 4.2. The performance of Dural sample DU2 appears to be intermediate 

between half-hard GF Al (GF5) and soft MC Al (MC3). The rapid improvements due to 

initial LiAl electroformation is consistent with the behaviour observed with two other 

samples. The noticeable degradation immediately afterwards is similar to MC3. Clearly 

the reversibility of Dural towards lithiation/delithiation is significantly impaired by the 

presence of alloying elements Cu and Mg in the alloy. This also leads to increased 

litiation-delithiation and appearance of diffusion-limited delithiation processes. The 

limited number of plateau jumps and overall cycling stability observed beyond the 100th 

cycle in DU2 must be related to the improved mechanical properties of Dural, due to the 

precipitation hardening effect of the Cu and Mg dopants. However, in the end, despite 

improved mechanical stability and cyclability, the electrochemical performance of Dural 

was shown to be insufficient for its use in Li ion batteries. The most likely reason is the 
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inhibiting effect of the alloying elements on the kinetics of lithiation-delithiation 

processes, as will be further discussed in Ch. 5. 
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4.3.2 SEM images 

 

Shown in Fig. 4-3-12 are SEM images of the uncycled area of the Dural anode (DU1) 

with oxide removed, as well as the reference GF Al (GF1) anode from Ch. 4.1. Fig. 4-3-

13 shows the cycled areas of the same two samples at different magnifications after being 

subjected to the 4x8 experiments. In sharp contrast to both Al 1100 materials the Dural 

(DU1) has a cycled area morphology that is significantly more heterogeneous under these 

4x8 conditions (Fig. 4-3-13 c-d). There are numerous sub-areas of limited reactivity that 

closely resemble the uncycled substrate (Fig. 4-3-12 d). This poor reactivity should be 

due to the significant copper content which is inert towards lithiation [1]. 

 

 

 

Figure 4-3-12: SEM images of uncycled areas for (a-b) GF Al (GF1) (oxide 

removed), (c-d) Dural (DU1) (oxide removed) anodes. Magnifications of (a,c) 1000x, 

(b,d) 10000x. 
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Figure 4-3-13: SEM images of cycled areas from 4x8 experiments for (a-b) GF Al 

(GF1) (oxide removed), (c-d) Dural (DU1) (oxide removed) anodes. Magnifications 

of (a,c) 1000x, (b,d) 10000x. 

 

Copper is introduced into Dural during its manufacturing and predominantly precipitate 

at the grain boundaries, which is also where lithiation will commence. The uncycled area 

in Dural itself shows a rough pitted etching pattern completely different from those 

observed in half-hard GF Al and soft MC Al anodes (Fig. 4-3-12 c-d). Pushing the DU2 

Dural anode towards failure results in a homogenous and globular morphology that 

appears to be fully reactive compared to the 4x8 version (DU1) (Fig. 4-3-14 d-e). Unlike 

the Al 1100 materials such as GF Al here (Fig. 4-3-14 a-b), there are no signs of large 

systematic cracking or a multilayer crust in the cycled morphology of this anode. 

Additionally the porous nanostructure is more compact in Dural than GF Al (Fig. 4-3-14 

f). 
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Figure 4-3-14: SEM images of cycled areas for (a-c) GF Al (GF5) (oxide removed), 

(d-f) Dural (DU2) (oxide removed) anodes subjected to 140 and 300 cycles each 

respectively at a current density of 0.5 mA/cm
2
 without an initial CV. 

Magnifications of (a,d) 100x, (b,e) 1000x, (c,f) 10000x. 
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4.3.3 EDX Composition Chart 

 

Shown in Table 4-3-15 is the EDX composition data for the uncycled as well as cycled 

porous and cycled flat areas of the Dural DU1 anode with oxide removed after being 

subjected to the 4x8 experiment. Also shown in the Table are the results for Dural DU2 

anode which was  subjected to failure experiment for 300 cycles at a current density of 

0.5 mA/cm2. The predominance of Al with small amounts of Cu and Mg within the 

uncycled area indicates an unreactive Dural substrate with surface contamination by the 

electrolyte (a). Carbon and oxygen content should arise from a combination of trace 

propylene carbonate and residual surface oxide present after the electrode preparation. 

The resulting very low oxygen content of a few percent is expected given the polished 

and etched preparation.  

 

Table 4-3-15: EDX composition chart of uncycled and cycled areas of Dural anode 

(oxide removed) after being subjected to a 4x8 experiment (DU1), as well as DU2 

Dural anode (oxide removed) that was subjected to 300 cycles at a current density of 

0.5 mA/cm
2
. The spectra were collected at a column voltage of 7 kV for 50 seconds 

at 1000x magnification.  

 Atomic %  

Sample Area C  O  F  Mg  Al  Si  P  Cu  

DU1 (a)Uncycled  1.68  1.99  0.16  1.06  92.08  0.31   2.72  

 (b)Porous  9.08  41.59  23.41  0.30  23.59  0.18  0.74  1.10  

 (c) Flat  3.53  7.93  1.12  0.76  84.07  0.10  0.21  2.28  

DU2 (d) Uncycled  4.44  4.27  4.88  1.05  82.36  0.15  0.33  2.53  

 (e)Porous  2.34  8.56  65.31  0.25  22.21  0.39  0.43  0.50  
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Trace phosphorus and fluorine content should be related to LiPF6 salt remaining after 

rinsing. The small amount of silicon detected is likely again due to a combination of 

silicon carbide paper used for polishing, and as an impurity in the Al alloy itself. Lithium 

cannot be detected due to the overlap of its low energy x-rays with the baseline peak 

close to 0 eV. 

 

The porous reactive region in the cycled area of Dural DU1 (b) shows significantly 

elevated carbon, oxygen and fluorine content as was also observed for bare GF and MC 

Al anodes in Ch. 4.1.3 and 4.2.3 (Fig. 4-1-15, 4-2-14). This is again likely due to the 

presence of electrolyte within the intermetallic structure, as well as the products of 

solvent electroreduction and salt decomposition in the SEI layer [3]. Cu and Mg are 

present throughout all cycled Dural material, which suggests that they are indeed inert in 

the lithiation-delithiation processes but remain at the electrode during the electrochemical 

and associated phase formation and volume changes. The unreactive alloying elements 

like copper increase the resistance towards lithiation, resulting in the increased 

overvoltage and decreased coulombic efficiency seen previously in the CVs and galvanic 

cycles (Figs. 4-3-2 to 4-3-6). This behaviour may also explain the unreactive regions 

observed by SEM within the cycled area of Dural DU1 (Fig. 4-3-13 c-d). The 

composition of these flatter regions of the cycled area resembles that of the uncycled 

area, with slightly more carbon, oxygen and fluorine (c). When pushed towards failure, 

DU2 resembles the composition of the reactive porous regions in DU1 with a few percent 

of Cu and Mg present (e). This composition will be fairly consistent across the entire 

cycled area of DU2, which supports our assumption that this sample is a fully reactive 

version of DU1. We again observed dramatically higher F:O and F:Al ratios in terms of 

percentage composition for DU2 relative to the 4x8 experiment DU1. Considering the 

LiPF6 salt this fluorine content should predominantly come from the electrolyte. However 

it is not clear in what form does this elevated fluorine content exist within the 

homogenous porous structure of DU2. With sustained cycling mechanical stresses 

accumulate in the electrode, one can expect a constant partial destruction of the SEI at the 

surface of the structure, which will results in exposure of fresh portions of Al material for 
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more SEI formation. As was mentioned before, the LiPF6 salt is also expected to 

thermally degrade over time into LiF and PF5 if any trace moisture content is present [4].  
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4.4 Aluminum-CNx and Dural-CNx Anodes 

 

Summary 

 

In Ch. 4.1 and Ch. 4.3 we investigated the lithiation-delithiation behaviour of bare 

Goodfellow Al (GF Al) and Duraluminum (Dural) respectively. These Al materials have 

differing mechanical properties, through the use of strain-hardening processing for GF Al 

(half-hard), and precipitation hardening with copper and magnesium alloying in Dural. 

Here we examine the effects of amorphous carbon nitride (CNx) thin films on lithiation-

delithiation behaviour with various CNx-coated anodes prepared on both GF Al and 

Dural substrates with the native surface oxide removed. The idea was twofold. First, we 

wanted to see if CNx can change the kinetics and mechanism of lithiation of Al anodes, 

for instance, by changing the kinetics of electrochemical reactions at the electrode or by 

modifying the properties of Al substrate, e.g., via nitridization or similar processes. It was 

also conceivable that some Li would be intercalated in CNx, since carbon (graphite) is a 

well-known intercalation material. Second, since the formation of LiAl intermetallic 

phase was shown to be accompanied by pronounced volume changes that are detrimental 

to the electrode performance and can result in poor reversibility of the lithiation-

delithiation processes, we anticipated that CNx could act as a kind of scaffold that would 

be able to control the volume change and prevent mechanical disintegration of the active 

material.  

 

Half-hard GF Al was chosen as the substrate for the Al-CNx samples instead of soft 

McMaster-Carr Al (MC Al). This choice was made due to the strain-hardening of GF Al  

offering improved structural stability in repeated scanning and cycling of the resulting 

intermetallic alloy (Ch 4.1 and 4.2). For Al-CNx anodes the first sample AC1 was 

prepared with 75 nm of CNx deposited on oxide-free half-hard GF Al under parameters 

of 50 W, 1 Pa and 75% N2 plasma. The second sample AC2 was similarly prepared and 

then underwent post-deposition thermal annealing at 150 oC for 2 hours. The magnetron 

power of 50 W was chosen to achieve both a reasonable deposition rate and film stability 
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in solution [1-2]. The lower deposition pressure of 1 Pa was chosen to make the resulting 

film more dense and less disordered [3-5]. From an earlier preliminary study in our group 

with Al-CNx samples of different nitrogen contents we determined that an optimum 75% 

N2 plasma composition for the CNx film results in the most stable charge/discharge 

response at high current densities with the best reversibility.  

 

These samples were characterized electrochemically in 4x8 experiments, which began 

with a cyclic voltammogram (CV) for three scans, followed by four sets of eight galvanic 

cycles at progressively higher current densities. In the initial CV of non-annealed Al-CNx 

(AC1) we observed increased SEI formation and overvoltage relative to bare GF Al (half-

hard), as well as strong evidence of volume change containment during intermetallic 

phase formation. The increased SEI formation is likely to be due to formation of a porous 

intermetallic structure with SEI formed at the walls of the pores. Importantly, SEI 

formation confirms that these pores are accessible to electrochemical reactions. 

Annealing of Al-CNx (AC2) showed further increases in SEI formation and volume 

change containment with a decreased overvoltage relative to AC1. In the galvanic cycles 

we observed minor differences in the charge-discharge plateau separation, as well as poor 

initial reversibility of AC1 at lower current densities relative to GF Al (half-hard). This 

poor initial performance was further exacerbated in the annealed version AC2. The 

surface analysis of the AC1 sample after electrochemistry revealed a relatively 

homogenous porous intermetallic alloy structure that was in parts covered by the 

remnants of the CNx film. The analysis of AC2 revealed a similar structure but with the 

remaining CNx most likely buried under the growing LiAl phase. An additional sample 

(AC3) of the same type as AC1 (non-annealed Al-CNx), which showed improved 

performance over annealed Al-CNx (AC2), was characterized electrochemically in a 

failure experiment, in which galvanic cycling of the anode begins immediately at a higher 

current density without initial conditioning through a CV. This cycling was sustained for 

180 cycles to observe the anode performance over time, which manifested with multiple 

plateau jumps and severe coulombic efficiency (CE) degradation relative to bare half-

hard GF Al (oxide removed). However surface analysis revealed less systematic cracking 
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of the intermetallic alloy compared to bare GF Al, with the CNx film further pulverized 

into smaller pieces.  

 

For Dural-CNx anodes the first sample DC1 was prepared with 75% N2 plasma similar to 

the non-annealed Al-CNx sample AC1 but on oxide-free Dural. To test the effect of 

nitrogen content the second sample DC2 was prepared similar to DC1 but with 25% N2 

plasma. These samples were characterized electrochemically in 4x8 experiments. In the 

initial CV of DC1 (75% N2 Dural-CNx) we observed increased SEI formation and 

comparable overvoltage relative to bare Dural, with some evidence of volume change 

containment. With lower nitrogen content DC2 (25% N2 Dural-CNx) showed further 

increases in SEI formation with similar overvoltage relative to DC1 but decreased ability 

to contain volume changes. In the galvanic cycles we observed minor differences in the 

charge-discharge plateau separation, with superior reversibility (higher CE) for DC1 

(75% N2) at lower current densities relative to bare Dural and comparable reversibility at 

higher current densities. At lower current densities the initial reversibility of DC2 (25% 

N2) was poorer but also became comparable at higher current densities. Surface analysis 

of the DC1 sample after electrochemistry revealed a highly heterogeneous surface with 

very limited reactivity in which the unreactive areas resembled uncycled Dural-CNx. In 

DC2 the cycled area was again very heterogeneous but with improved reactivity. 

Additional samples DC3 and DC4 of the same type as DC1 and DC2 respectively were 

characterized electrochemically in failure experiments. Cycling was sustained for 300 

cycles to observe the anode performance over time, which manifested in DC3 (75% N2) 

with multiple plateau jumps and severe CE degradation relative to bare Dural. Both of 

these trends were worse with decreased nitrogen content in DC4 (25% N2). For both 

samples surface analysis revealed a fully reactive intact porous morphology characteristic 

of the bare Dural anode failure experiment from Ch. 4.3, with no evidence of CNx film 

remnants present anywhere throughout either cycled area. 
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4.4.1. Cyclic Voltammograms, Galvanic Cycles, Calculations 

 

Al-CNx anodes 

 

The typical features of CVs with bare Al anodes were described previously in Ch. 4.1.1. 

Therefore this section will focus only on differences observed in the CV features of Al-

CNx anodes relative to bare half-hard GF Al anodes with the oxide removed. First we 

consider the partial cathodic scans between 1.5V and 0.25V vs. Li+/Li reference electrode 

(Fig. 4-4-1). For the purposes of comparison the bare GF Al anode GF1 Ch. 4.1 is 

included. The bolded numbers 1 to 3 denote the GF1, AC1 and AC2 samples respectively 

(1, bare GF Al; 2, Al-CNx; 3, annealed Al-CNx). 

 

 

 

Figure 4-4-1: Initial cyclic voltammograms of non-annealed and annealed 75% N2 

Al-CNx anodes AC1 (2, red) and AC2 (3, blue). Comparative bare half-hard GF Al 

anode GF1 (1) from Ch. 4.1 is also included in black. Partial cathodic scans from 2V 

to 0.25V to highlight SEI formation and lithiation onset behaviour.  
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First of all, we see that the lithiation onset potential is greatly affected by the presence of 

the CNx film. Addition of the 75% N2 75 nm sputtered CNx layer (AC1) to the GF Al 

substrate shifts the onset significantly towards more negative potentials. This feature 

indicates that formation of the LiAl intermetallic phase is more difficult at the Al-CNx 

electrode (AC1) compared to bulk GF Al (GF1). At a plasma composition of 75% N2 the 

resulting CNx film in AC1 will be considerably less conducting than amorphous graphite 

and the bare GF Al itself [7]. This alone would shift the potential to more negative 

potentials. Furthermore, the high nitrogen incorporation will cause significant cross-

linking of graphite through nitrogen-containing functional groups, effectively increasing 

its mechanical stability (hardness). Therefore volumetric expansion to create the new 

LiAl phase in Al-CNx anode will require more energy and therefore more overvoltage. 

Thermal annealing of the Al-CNx anode (AC2) shifts the onset to a value intermediate 

between that of non-annealed Al-CNx (AC1) and bare GF Al (GF1). This indicates a 

decrease in the overvoltage of LiAl formation for the AC2 anode, suggesting that a mild 

thermal annealing treatment may improve the conductivity of the CNx film, or decrease 

its mechanical strength, or both. It is also consistent with the increased lithiation currents 

observed for AC2 in the next figure (Fig. 4-4-2). 

 

Both Al-CNx samples show larger cathodic currents for the SEI formation relative to 

bare GF Al, which should be related to the fact that SEI layer is now formed not on Al 

but on CNx (Fig. 4-4-1). This effect is further amplified in the annealed Al-CNx sample 

AC2. Evidence of increased SEI presence on cycled Al-CNx anodes will be presented in 

the TOF-SIMS depth profiling results of Ch. 4.6. The SEI formation in both Al-CNx 

samples here in the CV appears broadened with no distinct reduction peaks, which is 

similar to the effect we observed for increased surface oxide content on GF Al and MC 

Al substrates in Ch. 4.1 (Fig. 4-1-2) and 4.2 (Fig. 4-2-1). Additional scanning in the CV 

will produce larger amounts of additional SEI formation for AC1 (non-annealed Al-CNx) 

relative to GF1 (bare GF Al), with this formation further increased in AC2 (annealed Al-

CNx). The greater amount of additional SEI formation in the Al-CNx samples relative to 

bare GF Al indicates that a different nanostructure is formed on these substrates with 

higher porosity. SEI will then form on the inner walls of the pores too. The increase in 
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the SEI current then suggests that these pores are accessible to electrolyte and to 

electrochemical reactions. The additional SEI formation may be also due to cracking of 

the coating during subsequent CV scans, which will be demonstrated in the SEM imaging 

section 4.4.2. As the CNx coating progressively cracks during LiAl phase formation and 

dissolution it will expose more fresh Al material for SEI formation. Furthermore the 

cracking of the coating itself will also partially destroy the SEI layer present on it.  

 

Next we compare the full CV scans of all samples in Fig. 4-4-2. Sample AC1 (non-

annealed Al-CNx) shows a significantly smaller loop area relative to GF1 (bare GF Al) in 

the anodic scans. This suggests that the CNx coating is acting to contain the volume 

changes of LiAl phase formation and dissolution. Comparing the scan of AC2 (annealed 

Al-CNx) versus AC1 shows a further amplification of this effect. Even though the 

lithiation currents of the annealed sample are much larger the resulting loop area is still 

quite small. The annealed CNx coating may have stronger adhesion to the GF Al 

substrate as well as improved mechanical stability. The larger loop size observed for GF1 

is consistent with the steeper slope of the current following the lithiation onset also seen 

in this figure, and again indicates that there is a larger degree of volume change for 

intermetallic phase formation in this uncoated bare GF Al sample. Moving on, we 

observe that both coated samples only show a single broad delithiation peak, which 

suggests that lithiation-delithiation of Al-CNx anodes predominantly occurs through LiAl 

alloying/de-alloying, with the CNx film acting as an ionic conducting pathway but not an 

intercalation material. This is also supported by our TOF-SIMS depth profiling 

measurements that show very low content of Li containing species in the CNx portion of 

the cycled Al-CNx anode as compared to the underlying intermetallic phase (see Сh. 4.6.) 

This delithiation peak potential in both coated samples is shifted significantly positive 

relative to bare GF Al (GF1). The resulting increased overvoltage would suggest kinetic 

limitations and increased resistance for the de-alloying process due to the CNx film. 

However the delithiation onset potentials (non-zero anodic current) for all three samples 

appear fairly similar around 0.6V. 
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Figure 4-4-2: Initial cyclic voltammograms of non-annealed and annealed 75% N2 

Al-CNx anodes AC1 (2, red) and AC2 (3, blue). Comparative half-hard GF Al anode 

GF1 (1) from Ch. 4.1 is also included in black.  

 

Shown in Fig. 4-4-3 are the features of a typical set of galvanic cycles for non-annealed 

Al-CNx anode AC1 at a current density of 0.25 mA/cm2 in red color, with the 

comparative cycle set of the bare half-hard GF Al anode GF1 (oxide removed) in black 

color. Overall, we observe a similar sequence of events (denoted in the numbers 1 to 5) 

within the cycle set as described previously for GF Al anodes in Ch. 4.1, with single long 

and flat plateaus for both the charge and discharge portions. However, the presence of 

CNx clearly gives rise to occurrence of additional diffusion-limited processes in the 

discharge portion, as well as a slight increase in the plateau separation that suggests an 

increase in the resistance. 
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Figure 4-4-3: Typical galvanic cycles for lithiation/delithiation of an Al-CNx anode 

(red curve). This is sample AC1 in which the CNx film was deposited prior to 

electrochemical scans. Comparative bare half-hard GF Al anode GF1 (oxide 

removed) from Ch. 4.1 is also included (black curve). Numbers indicate the features 

of interest: (1) potential overshot (2) charge plateau (3) IR drop (4) discharge 

plateau (5) diffusion-controlled discharge tail. Galvanic cycles are shown at a 

current density of 0.25 mA/cm
2
.  

 

Shown in Fig. 4-4-4 are the set of galvanic cycles of non-annealed and annealed Al-CNx 

anodes AC1 and AC2 in red and blue colors respectively at a current density of 0.25 

mA/cm2. The comparative cycle set of the bare GF Al anode GF1 (oxide removed) is 

included in black color. In both Al-CNx anodes we observe pronounced diffusion-limited 

processes in the discharge cycle, which, however, largely disappear by the 8th cycle. This 

indicates that while at first CNx is impeding the delithiation process, this effect is 

temporary. Also, there is a shift in both lithiation plateau potentials during cycling. For 

example, non-annealed Al-CNx (AC1) had a consistently more negative lithiation onset 

potential in the CV than bare GF Al (GF1) (Fig. 4-4-1), but here in the first cycle AC1 

undergoes lithiation near the potential of GF1, and then transitions to even more positive 
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potential closer to that of annealed Al-CNx (AC2) by the eighth cycle. The AC2 anode 

had a lithiation onset potential In the CV that was intermediate between that of AC1 and 

GF1 (Fig. 4-4-1), while here in the cycles the charge plateau is notably more positive 

than both of those samples. Overall these effects together emphasize the evolution of the 

nanostructure at both Al-CNx anodes. We also observe shifting in the delithiation plateau 

potentials of AC1 and AC2 with cycling, but these potentials still remain more positive 

than for GF1. Therefore delithiation is still more difficult in Al-CNx, which is consistent 

with the more positive peak potentials in the CV (Fig. 4-4-2), and suggests that CNx may 

be reacting to some extent with components of the intermetallic nanostructure. One 

possible explanation maybe that CNx expands the concentration range of the existence of 

α-LiAl phase, which features more positive potential than β-LiAl that we mostly observe 

in our experiments. The α-LiAl phase is a solid solution of Li in Al. It exists only at very 

low Li loads but perhaps the presence of CNx can affect this behaviour.  

 

 

 

Figure 4-4-4: Galvanic cycles of non-annealed and annealed 75% N2 Al-CNx anodes 

AC1 (red) and AC2 (blue) at a current density of 0.25 mA/cm
2
. Comparative bare 

half-hard GF Al anode GF1 from Ch. 4.1 is also included in black.  
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Shown in Fig. 4-4-5 are the first (a) and last (b) galvanic cycles for all samples in this set. 

One can see that the CNx coating of AC1 (non-annealed Al-CNx) decreases the duration 

of the main discharge plateau due to appearance of the diffusion limited process. 

Therefore, the coulombic efficiency (CE) also decreases relative to bare half-hard GF Al 

(GF1) (Fig. 4-4-5 a). This trend is also seen from the initial discharge peak shape of AC2 

(Fig. 4-4-5 a). By the eighth cycle the differences in CE of all three samples will largely 

disappear as the discharge peak shapes become comparable (Fig. 4-4-5 b). The evolution 

of the coulombic efficiencies with the cycle number is shown in Fig. 4-4-6 for the four 

current densities used. We observe that the initial CE of both coated samples is again 

poor relative to GF1 (GF Al, black) but rapidly become comparable over time in the third 

set (Fig. 4-4-6 c). At the highest current density both coated samples perform poorly but 

the CE of AC1 (non-annealed Al-CNx) now exceeds that of GF1 (bare GF Al) (Fig. 4-4-

6 d). Here the AC2 (annealed Al-CNx) sample encountered the charging potential limit 

early in the seventh cycle, resulting in the remaining two cycles being terminated quickly 

and therefore omitted from this figure. 

 

 

 

Figure 4-4-5: (a) First and (b) last galvanic cycles of non-annealed and annealed 

75% N2 Al-CNx anodes AC1 (red) and AC2 (blue) at a current density of 0.25 

mA/cm
2
. Comparative bare half-hard GF Al anode GF1 from Ch. 4.1 is included in 

black. Cycles in the right figure have been offset to overlap the curves on the same 

time scale.  
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Figure 4-4-6: Coulombic efficiencies of non-annealed and annealed 75% N2 Al-CNx 

anodes AC1 (red) and AC2 (blue) at current densities of (a) 0.13 (b) 0.25 (c) 0.5 and 

(d) 1 mA/cm
2
. Comparative bare half-hard GF Al anode GF1 from Ch. 4.1 is 

included in black. 

 

Overall these results suggest that the reversibility of lithiation-delithiation for Al-CNx is 

worse initially at lower current densities relative to bare GF Al. Initial formation of the 

porous nanostructure at the anode surface will be restricted by volume change 

containment and increased resistivity/kinetic limitations due to the presence of CNx as 

seen in the CV (Fig. 4-4-2). This constraint is further enhanced by the thermal annealing 

treatment. More overvoltage is then required in Al-CNx for lithiation-delithiation early 

and the LiAl intermetallic phase that is created is likely to be more compact, which 

causes the occurrence of diffusion limitations for lithium extraction (Fig. 4-4-6 a-b). As 

the porous structure develops more towards the higher current densities, emphasized by 

the shifting cycle plateau potentials, less overvoltage is required for volume changes. 
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Therefore more lithium can be recovered upon delithiation which makes the efficiency of 

Al-CNx at higher densities approach or surpass that of bare GF Al (Fig. 4-4-6 c-d). 

 

To investigate the stability and cycling ability of the Al-CNx anode we performed a half-

cell failure experiment on a new sample AC3. The sample was prepared in the same way 

as "non-annealed Al-CNx" sample AC1 described above. We chose a CNx coating 

without thermal annealing for AC3 because the reversibility of both non-annealed and 

annealed Al-CNx anodes appear comparable at higher current densities (Fig. 4-4-6 c-d). 

As in previous half-cell failure experiments in Ch. 4.1 to 4.3, no prior electroformation of 

the LiAl phase was performed using either a CV or galvanic cycles at low current 

densities. The cycling was commenced immediately at a high current density of 0.5 

mA/cm2 for a total of 180 cycles. This current density is equivalent to that of the third set 

of cycles in the 4x8 experiments.  

 

Shown in Fig. 4-4-7 is the full set of the corresponding galvanic cycles. One can see that 

the cycling behaviour is quite unstable compared to the similar experiment with bare 

half-hard GF Al (GF5) (Fig. 4-1-8). Here the plateau potential jumps occur with 

significantly larger amplitude and higher frequency. Before each jump the overvoltages 

in both charging and discharging plateaus significantly increase so that the charge plateau 

potential drifts well below 0V vs. Li+/Li.  
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Figure 4-4-7: Full set of galvanic cycles for the AC3 non-annealed 75% N2 Al-CNx 

anode subjected to 180 cycles at a current density of 0.5 mA/cm
2
 without an initial 

CV.  

 

Fig. 4-4-8 a-b shows the first two and last two cycles in black and red, respectively. 

Arrows in the red curve indicate the secondary and tertiary plateaus appearing over time 

in the discharge portion of the cycle, which were also observed with cycling of bare GF 

Al earlier in Ch. 4.1 (Fig. 4-1-9) and have been attributed to the diffusion-controlled 

delithiation of the α-LiAl intermetallic phase. The very first cycle shows two discharge 

plateaus with comparable lengths (Fig. 4-4-8 a). The higher plateau at 1.47V is a similar 

potential to the discharge plateau of 1.41V in the first cycle of the bare GF Al failure 

anode GF5 (Fig. 4-1-9). Therefore this higher plateau should be delithiation from an 

intermetallic alloy. The lower plateau here around 0.77V may uniquely arise from 

delithiation from just the CNx itself. If these two discharge plateaus in the first cycle are 

fitted together we achieve a main CE of 60%. In the second cycle the lower discharge 

plateau disappears with the upper plateau shifting down to 1.25V and changing its shape 
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to indicate the removal, to a large extent, the diffusion limitations (Fig. 4-4-8 a). 

Therefore beyond the first cycle of AC3 lithiation-delithiation is considered to occur 

entirely through intermetallic alloy phase formation and dissolution, as suggested by the 

shape and parameters of the last cycles in the set (red curve).  

 

 

 

Figure 4-4-8: First two (black) and last two (red) galvanic cycles for the AC3 non-

annealed 75% N2 Al-CNx anode subjected to 180 cycles at a current density of 0.5 

mA/cm
2
 without an initial CV. Numbers in the red curve denote the secondary and 

tertiary diffusion-limited plateaus. The red curve has been offset to overlap with the 

time scale of the black curve.  

 

To further characterize the performance of the sample, the separation between the charge 

plateau and the main discharge plateau is plotted in Fig. 4-4-9, together with the 

coulombic efficiencies of the main as well as the secondary and tertiary discharge 

plateaus shown in Fig. 4-4-10 and Fig. 4-4-11 respectively for every fifth cycle starting 
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from the first cycle. Additionally, the figures also show the data for cycles right before 

and after the potential jumps observed within the cycle set. We did not observe the 

secondary diffusion plateau until approximately the 15th cycle and the tertiary diffusion 

plateau until approximately the 5th cycle. For the sake of comparison, the data from bare 

half-hard GF Al half-cell failure experiment (GF5, oxide-removed) from 4.1 is included 

in black color in both Fig. 4-4-9 and Fig. 4-4-10, with the new non-annealed Al-CNx 

AC3 data appearing in red color.  

 

 

 

 

Figure 4-4-9: Charge-Discharge plateau separation (red curve) for the main 

discharge plateau for AC3 non-annealed 75% N2 Al-CNx anode subjected to 180 

cycles at a current density of 0.5 mA/cm
2
 without an initial CV. For comparison, 

data for bare half-hard GF5 GF Al anode (oxide removed) from Ch. 4.1 is included 

in black. Plateau jump events in AC3 are indicated with arrows.  
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Figure 4-4-10: Coulombic efficiency data for the main discharge plateau (red curve) 

for AC3 non-annealed 75% N2 Al-CNx anode subjected to 180 cycles at a current 

density of 0.5 mA/cm
2
 without an initial CV. For comparison, data for bare half-

hard GF5 GF Al anode (oxide removed) from Ch. 4.1 is included in black. Plateau 

jump events in AC3 are indicated with arrows.  

 

 

 

 

 

 

 

 

 



www.manaraa.com

175 

 

 

 

Figure 4-4-11: Coulombic efficiencies for the secondary (black) and tertiary (red) 

diffusion-limited discharge plateaus for AC3 non-annealed 75% N2 Al-CNx anode 

subjected to 180 cycles at a current density of 0.5 mA/cm
2
 without an initial CV.  

 

One can see that at first the plateau separation decreases and the coulombic efficiency 

increases indicating the formation of the LiAl phase and improvement in the kinetics and 

reversibility of the lithiation-delithiation. Progressing towards the fifth cycle the main CE 

increases sharply up to 82% with a set minimum of 0.85V for the plateau separation 

(Figs. 4-4-9, 4-4-10). At the fifth cycle the tertiary diffusion-limited plateau appears 

around 2.15V with a CE of 3% (Fig. 4-4-11). Moving from the 5th to the 10th cycle the 

main CE reaches maximum value for the whole set of 87% with the plateau separation 

remaining small around 0.93V (Figs. 4-4-9, 4-4-10). This value for Al-CNx (AC3) is 

noticeably higher than the max main CE of 73% observed over the whole set for the bare 

GF Al failure anode (GF5) (Fig. 4-4-10). This suggests that the presence of the CNx 

coating at first considerably improves the reversibility of lithiation-delithiation under 

these cycling conditions. At the 15th cycle the secondary diffusion-limited plateau 

appears at 1.63V with an initial CE of 2.5% (Fig. 4-4-11). This process will steadily grow 

to a maximum CE of 7% by the 100th cycle of AC3 (Al-CNx) and is very similar to the 
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maximum value of 7% observed for the same experiment in bare GF Al (GF5, Fig. 4-1-

12). After the 15th cycle the main CE shows a constant steady drop accompanied by a 

continuous increase in the main plateau separation (Figs. 4-4-9, 4-4-10). This indicates 

unfavourable changes in the structure of the LiAl phase with cycling and is consistent 

with the behaviour of the other half-cell failure anodes presented in this work (Ch. 4.1 to 

4.3). Here we see that the degradation of AC3 (Al-CNx) is significantly worse than for 

GF5 (bare GF Al). The downward curvature in the charging plateau for AC3 also 

becomes far more severe as it drifts negative below 0V (Fig. 4-4-7). As usual the tertiary 

plateau potential shifts upward over time and hits the upper potential limit of +2.6V at the 

25th cycle (Fig. 4-4-11). The degradation observed in the performance of AC3 (non-

annealed Al-CNx) will instead be directly related to a combination of increasing 

secondary diffusion losses and a shortening of the main discharge plateau itself. Taken 

together, these changes indicate that the lithiation-delithiation of the nanosructure present 

at the anode surface at this time is getting progressively more and more difficult.  

 

By the 70th cycle the main CE has decreased to 69% with the plateau separation 

increasing to almost 2V and the secondary CE up to 6% (Figs. 4-4-9, 4-4-10, 4-4-11). 

The CE is now equal to the one observed with uncoated GF Al indicating that the positive 

initial effect of the CNx coatings has largely disappeared. At the 71st cycle we observe 

the first jump in the plateau potentials. In the bare GF Al failure experiment (GF5) we did 

not observe the first plateau jump until the 80th cycle, likely related to the more severe 

degradation of Al-CNx (AC3) here. To recall, the jump is related to shedding of the 

irregular disordered portion of the LiAl phase responsible for the kinetic limitations 

observed in the previous cycles. Immediately following the jump the plateau separation 

resets to 0.93V with the charge plateau itself becoming flat again (Fig. 4-4-9). The 

change in potentials here are far more drastic than the first jump in GF5. As usual we 

observe a local maximum of the tertiary CE as the process has a longer duration before 

being terminated by the upper limit (Fig. 4-4-11). However, in the other respects, the 

overall peak shape and width appeared fairly similar before and after the jump.  
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After the jump the AC3 system appears to briefly stabilize and improve. From the 71st to 

the 75th cycle the main CE increases to 74% and the secondary and tertiary CEs decrease 

to 4.5% and 3% respectively. As in other half-cell failure anodes the effect is only 

temporary and the same degradation trends soon continue as a new portion of the 

disordered phase accumulates at the surface. From the 75th to the 95th cycle the main CE 

has dropped to 61% with the plateau separation up to 2V again (Figs. 4-4-9, 4-4-10). 

From the 95th to the 107th cycle the degradation accelerates, with both charge and 

discharge portions showing very noisy potential responses (Fig. 4-4-7). By the 107th 

cycle the main CE has plummeted down to only 33% due to the entire discharge peak 

width drastically narrowing (Fig. 4-4-10). However the secondary CE remains noticeable 

at 7% while the tertiary CE is essentially absent (Fig. 4-4-11). The plateau separation is 

almost 2.3V with the charge plateau itself around -0.8V (Fig. 4-4-9). The degradation 

behaviour observed within this particular cycling interval of AC3 (non-annealed Al-CNx) 

is more significant than for any other half-cell failure anode experiments in this thesis.  

 

At the 108th cycle we observe the second jump in plateau potentials. Following the jump 

the plateau separation resets to 1.02V and the charge plateau is flat again (Fig. 4-4-9). 

Here we immediately observe a large main CE increase in the discharge peak of the 

108th cycle up to 51%, with the secondary CE remaining significant around 7% (Figs. 4-

4-10, 4-4-11). From the 108th to the 110th cycle we will again observe a temporary 

performance improvement similar to the first jump. This time the improvement is much 

larger with the main CE up to 73% as the secondary and tertiary CEs decrease to 4% and 

2% respectively. Onwards from the 110th cycle the degradation of the anode will begin 

again, but to a far more subtle degree than the trends preceding the second jump. By the 

139th cycle the main CE only shows a small decrease to 67% (Fig. 4-4-10). However the 

plateau separation again increases sharply to a value of 2.03V (Fig. 4-4-9). At the 140th 

cycle we observe the third jump in plateau potentials, with the separation resetting to 

0.98V (Fig. 4-4-9). Again there will be a temporary improvement of the main CE up to 

71% by the 145th cycle (Fig. 4-4-10). As in the trends preceding the third jump the 

degradation that follows here will be subtle. A fourth and final jump is observed in this 

set around 165th cycle, see (Fig. 4-4-7). The AC3 anode does continue to steadily fail 
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slowly at this point with a main CE of 67% by the 180th cycle, with the secondary and 

tertiary CEs remaining around 5% and 1% respectively. Even though the frequency and 

severity of jumps is much higher here in the AC3 (non-annealed Al-CNx) anode the final 

main CE of 67% is comparable to the value of 70% for GF5 (bare GF Al) after 140 

cycles. Additionally the maximum secondary CE of 6-7% observed here is again similar 

to the GF5 set, even though the process appears earlier in AC3. 

 

As in previous failure experiments the plateau jump events are likely due to pulverization 

of the porous intermetallic structure as mechanical stresses of lithiation/delithiation 

accumulate in the anode. The presence of the CNx coating results in more regular porous 

nanostructure developed at the anode surface. This results in improved cycling 

performance (efficiency) for Al-CNx (AC3) relative to bare GF Al (GF5). Afterwards the 

failure of the Al-CNx anode is significantly worse both in terms of the plateau separation 

and the efficiency trends. The excessive plateau separation implies a build-up of 

resistance in the anode over time. Firstly, a more compact porous structure formed in Al-

CNx may make some regions of the surface less accessible towards lithiation-delithiation. 

Secondly, in Ch. 4.6 we will reveal with TOF-SIMS depth profiling that the film-metal 

interface of Al-CNx anodes may contain aluminium carbides and/or nitrides. These 

compounds are known to be insulators which would increase the resistance. Also, their 

presence may extend the region of solid solution α-LiAl phase. As the porous structure is 

pulverized here under continuous cycling we would expect the CNx film to also fracture 

into progressively smaller sections. This will be demonstrated in the SEM imaging 

section 4.4.2 where the volume change containment by the CNx results in the underlying 

porous structure experiencing significantly less cracking. However this causes the CNx 

film to be essentially destroyed. The severe degradation in the main CE between the first 

and second plateau jumps of Al-CNx (AC3) (Fig. 4-4-10) may correspond to just this 

process. After this point the efficiency rapidly improves to and remains around 70%, 

similar to that of bare GF Al (GF5). The influence of CNx coatings on capacity loss 

mechanisms in Al anodes will be further discussed in Ch. 5. 
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Dural-CNx anodes 

 

Shown in Fig. 4-4-12 are the partial cathodic scans of 75% N2 and 25% N2 plasma Dural-

CNx samples DC1 and DC2 between 2V and 0.25V vs. Li+/Li electrode (Fig. 4-4-1). For 

the purposes of comparison the bare Dural anode DU1 from Ch. 4.3 is also included. The 

bolded numbers 1 to 3 denote the DU1, DC1 and DC2 samples respectively (1, Dural; 2, 

75% N2 Dural-CNx; 3, 25% N2 Dural-CNx). 

 

We see that in the first scan the presence of the CNx film has very minimal if any effect 

on the lithiation onset potential for Dural-CNx, possibly because it is already difficult to 

lithiate Dural relative to GF Al. However additional scanning in the CV will produce a 

more positive lithiation onset potential for Dural-CNx relative to Dural, with a further 

positive shift as the nitrogen content is increased to 75% N2 (DC1) (Fig. 4-4-13). This 

suggests that after some initial formation of the porous nanostructure in Dural-CNx 

further lithiation will occur with this structure rather than with previously unreactive 

Dural because it is energetically more favourable. This effect of CNx on the lithiation 

onset potential of Dural is quite different from GF Al where the coating resulted in a 

consistently more negative lithiation onset potential in the CV (Figs. 4-4-1, 4-4-2). Both 

Dural-CNx samples show larger cathodic currents for the SEI formation relative to bare 

Dural which again suggests that the SEI is formed not only on Dural but on the CNx 

coating as well. This effect is further amplified in the 25% N2 sample DC2. The 75% N2 

sample DC1 shows a broad SEI formation similar to bare Dural DU1 with no distinct 

reduction peaks. However DC2 does appear to contain two peaks in the region of 0.75 to 

1.0V. Additional scanning in the CV will produce larger amounts of additional SEI 

formation for DC1 (75% N2 Dural-CNx) relative to DU1, with this formation further 

increased in DC2 (25% N2 Dural-CNx).  
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Figure 4-4-12: Initial cyclic voltammograms of non-annealed 75% N2 and 25% N2 

Dural-CNx anodes DC1 (2, red) and DC2 (3, blue). Comparative bare Dural anode 

DU1 (1) from Ch. 4.3 is included in black. Partial cathodic scans from 2V to 0.1V to 

highlight SEI formation and lithiation onset behaviour. 

 

 
Shown in Fig. 4-4-13 are full CV scans of the three samples. Sample DC1 (75% N2 

Dural-CNx) shows a smaller loop area relative to DU1 (bare Dural) in the anodic scan, 

even with a higher lithiation current for the coated sample. However the difference in 

loop areas here is not nearly as dramatic as was observed in Al-CNx relative to bare GF 

Al (Fig. 4-4-2), and the effect here is further decreased in sample DC2 (25% N2 Dural-

CNx). The minor difference in loop areas for Dural-CNx versus Dural is consistent with 

the lithiation slopes only appearing slightly more gradual for both coated samples. 

Together these features suggest that the containment of volume changes of intermetallic 

phase formation upon applying the CNx coating in Dural is less significant than in GF Al 

(Fig. 4-4-2), and the effect is even more minimal as the nitrogen content is decreased. 

Dural itself should already be considerably more tougher mechanically against the lattice 

contractions and expansions of lithiation-delithiation, resulting in the formation of a more 

compact intermetallic phase. The decreased volume change containment at lower 
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nitrogen content (DC2) can be understood again on the basis that less incorporation of 

nitrogen-containing functional groups effectively decreases the cross-linking within the 

CNx and therefore its mechanical stability (hardness). As in Al-CNx anodes both Dural-

CNx anodes show only a single delithiation peak, suggesting again that lithiation-

delithiation occurs entirely through intermetallic phase formation and dissolution with the 

Al content. While both Dural-CNx anodes show an earlier lithiation onset potential the 

delithiation peak potentials are still shifted positive relative to Dural. The resulting 

overvoltages are however still smaller for Dural-CNx. This behaviour is unlike Al-CNx, 

where the inclusion of the 75% N2 CNx film clearly increased the overvoltage of the GF 

Al anode system in the CV (Fig. 4-4-2). Like the subtle changes in the onset slope and 

loop areas, this again suggests that a different nanostructure may be formed during 

lithiation-delithiation of Dural-CNx. 

 

 

 

Figure 4-4-13: Initial cyclic voltammograms of non-annealed 75% N2 and 25% N2 

Dural-CNx anodes DC1 (2, red) and DC2 (3, blue). Comparative bare Dural anode 

DU1 (1) from Ch. 4.3 is included in black. Full single scans.  
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Shown in Fig. 4-4-14 are the features of a typical set of galvanic cycles for 75% N2 

Dural-CNx anode DC1 at a current density of 0.25 mA/cm2 in red color, with the 

comparative cycle set of the Dural anode DU1 in black color. Overall we observe a 

similar sequence of events (denoted in the numbers 1 to 5) within the cycle set. Similar to 

bare Dural (DU1) there is increased curvature between the IR jump and establishment of 

the discharge plateau for DC1, as well as increased curvature in the charge and discharge 

plateaus themselves. However, now we see that the presence of CNx affects more the 

lithiation rather than delithiation potential. This may be related to the fact that the 

lithiation potential of Dural is shifted already to more negative potentials due to slow 

kinetics at Cu and Mg alloying elements. When the Dural anode is coated with CNx, the 

reduction will occur on CNx rather than Dural and will require less overpotential.  

 

 

Figure 4-4-14: Typical galvanic cycles for lithiation/delithiation of a Dural-CNx 

anode (red curve). This is sample DC1 in which the CNx film was deposited at 75% 

N2 plasma prior to electrochemical scans. Comparative bare Dural anode DU1 from 

Ch. 4.3 is also included (black curve). Numbers indicate the features of interest: (1) 

potential overshot (2) charge plateau (3) IR drop (4) discharge plateau (5) discharge 

tail. Galvanic cycles are shown at a current density of 0.25 mA/cm
2. 
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Shown in Fig. 4-4-15 are the set of galvanic cycles of non-annealed 75% N2 and 25% N2 

Dural-CNx anodes DC1 and DC2 in red and blue colors respectively at a current density 

of 0.25 mA/cm2. The comparative cycle set of the Dural anode DU1 is included in black 

color. In both Dural-CNx anodes we observe a stable charging/discharging response and 

again several important features emerge. Again, throughout the set 75% N2 Dural-CNx 

(DC1) has a significantly more positive lithiation (charging) potential relative to Dural 

(DU1), consistent with the more positive lithiation onset potential observed for DC1 in 

the CV (Fig. 4-4-13). With decreased nitrogen content (DC2) the charging potential is 

shifted between that of DC1 and DU1, similar again to the correlation observed in the 

CV. Therefore, we confirm that lithiation is relatively easier to perform in Dural-CNx 

and increased nitrogen content enhances this effect, because the lithiation now occurs at 

nitrogen-containing species. The delithiation (discharging) potential of both Dural-CNx 

samples is shifted negative relative to Dural. Therefore delithiation is now also relatively 

easier to perform in Dural-CNx, which is opposite from the trend in the CV (Fig. 4-4-13). 

This plateau potential in the cycles appears to be unaffected by the nitrogen content. This 

may be due to a different charge transfer resistance and/or rate determining step. Finally, 

we note here that while the Dural-CNx samples have a consistently smaller plateau 

separation than Dural, the values are still notably larger than those observed for the same 

cycles of the non-annealed 75% N2 Al-CNx anode AC1 (Fig. 4-4-4). 
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Figure 4-4-15: Galvanic cycles of non-annealed 75% N2 and 25% N2 Dural-CNx 

anodes DC1 (red) and DC2 (blue) at a current density of 0.25 mA/cm
2
. Comparative 

bare Dural anode DU1 (oxide removed) from Ch. 4.3 is included in black.  

 

 

Shown in Fig. 4-4-16 are the first (a) and last (b) galvanic cycles for all samples in this 

set. One can see that with the 75% N2 CNx coating the DC1 sample actually shows a 

longer main discharge plateau and improved coulombic efficiency (CE) relative to DU1 

(bare Dural) (Fig. 4-4-16 a). However the discharge of DC2 (25% N2 Dural-CNx) is still 

significantly impeded, which will bring the initial CE below that for DU1. By the eighth 

cycle the differences in CE of all three samples will disappear as the discharge peak 

shapes become nearly identical (Fig. 4-4-16 b). The evolution of the coulombic 

efficiencies with the cycle number is shown in Fig. 4-4-17 for the four current densities 

used. Progressing to the third set the discharge peak shapes of all three samples will be 

similar throughout and so will the CE trends (Fig. 4-4-17 c). This will continue towards 

the end of the highest current density set where the trends diverge and DU1 (bare Dural) 

now having a superior performance relative to both coated samples (Fig. 4-4-17 d).  
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Figure 4-4-16: (a) First and (b) last galvanic cycles of non-annealed 75% N2 and 

25% N2 Dural-CNx anodes DC1 (red) and DC2 (blue) at a current density of 0.25 

mA/cm
2
. Comparative bare Dural anode DU1 (oxide removed) from Ch. 4.3 is also 

included in black. Cycles in the right figure have been offset to overlap the curves on 

the same time scale.  
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Figure 4-4-17: Coulombic efficiencies of non-annealed 75% N2 and 25% N2 Dural-

CNx anodes DC1 (red) and DC2 (blue) at current densities of (a) 0.13 (b) 0.25 (c) 0.5 

and (d) 1 mA/cm
2
. Comparative bare Dural anode DU1 (oxide removed) from Ch. 

4.3 is also included in black.  

 

Overall these results suggest that at lower current densities the CNx coating can actually 

improve the reversibility of lithiation-delithiation in Dural, when comparing 75% N2 

Dural-CNx (DC1) to bare Dural (DU1) (Fig. 4-4-17 a-b). In contrast, the presence of the 

75% N2 CNx coating on GF Al noticeably impaired the reversibility at lower current 

densities (Fig. 4-4-6 a-b). Only at the highest current density did non-annealed Al-CNx 

achieve a consistently higher CE than bare GF Al (Fig. 4-4-6 d). The significant positive 

and negative shifts of charging and discharging plateau potentials for Dural-CNx (DC1) 

imply that lithiation-delithiation is relatively easier to perform even with very minimal 

intermetallic phase formation (Fig. 4-4-15). The porous structure that is formed with 

Dural-CNx may possibly be more stable resulting in less diffusion-limited delithiation 
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behaviour. The superior performance of DC1 (75% N2) relative to DC2 (25% N2) at 

lower current densities should be due to higher incorporation of nitrogen-based functional 

groups, which creates a film with superior mechanical properties.  

 

To investigate the stability and cycling ability of the Dural-CNx anodes we performed 

half-cell failure experiments on new samples DC3 and DC4. The samples were prepared 

in the same way as DC1 (75% N2) and DC2 (25% N2) samples respectively used in the 

4x8 experiments. We tested both 75% N2 and 25% N2 Dural-CNx samples to observe the 

influence of nitrogen content on the failure mechanism. As in previous half-cell anode 

failure experiments no prior electroformation of the LiAl phase was performed using 

either a CV or galvanic cycles at low current densities. The cycling was commenced 

immediately at a high current density of 0.5 mA/cm2 for a total of 300 cycles each. This 

current density is equivalent to that of the third set of cycles in the 4x8 experiments.  

 

Shown in Fig. 4-4-18 are the full sets of the corresponding galvanic cycles for (a) DC3 

(75% N2) and (b) DC4 (25% N2) Dural-CNx anodes. Beginning with DC3 we observe 

that the cycling behaviour is less stable compared to the similar experiment with bare 

Dural (DU2) (Fig. 4-3-7). The plateau potential jumps occur with larger amplitude and 

higher frequency. Before each jump the overvoltages in both charging and discharging 

plateaus significantly increase so that the charge plateau potential drifts well below 0V 

vs. Li+/Li. With lower nitrogen content in the CNx film the DC4 sample shows even 

more pronounced degradation with twice the number of plateau potential jumps, even 

though the amplitude of the jumps is comparable to DC3. Fig. 4-4-19 shows the first two 

(a) and last two (b) cycles respectively of both samples. Arrows in the figure indicate the 

secondary and tertiary plateaus appearing over time in the discharge portion of the cycles 

for both samples, which were also observed with cycling of bare Dural earlier in Ch. 4.3 

(Fig. 4-3-8) and have been attributed to the diffusion-controlled delithiation of the α-LiAl 

intermetallic phase. To further characterize the performance of both samples, the 

separation between the charge plateau and the main discharge plateau is plotted in Fig. 4-

4-20, together with the coulombic efficiencies of the main as well as the secondary and 

tertiary discharge plateaus shown in Fig. 4-4-21 and Fig. 4-4-22 respectively for every 
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fifth cycle starting from the first cycle. Additionally, the figures also show the data for 

cycles right before and after the potential jumps observed within the cycle set. For DC3 

(75% N2 Dural-CNx) and DC4 (25% N2 Dural-CNx) we did not observe the secondary 

diffusion plateau until approximately the 25th and 30th cycles respectively. Additionally 

the tertiary diffusion plateau for DC3 was not observed until approximately the 5th cycle. 

Therefore the secondary and tertiary process CEs are absent within those regions of Fig. 

4-4-22. For the sake of comparison, the data from the bare Dural half-cell failure 

experiment (DU2, oxide removed) from Ch. 4.3 is included in black color in both Fig. 4-

4-20 and Fig. 4-4-21, with the new DC3 (75% N2) and DC4 (25% N2) data appearing in 

red and blue colors respectively.  
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Figure 4-4-18: Full set of galvanic cycles for non-annealed (a) DC3 75% N2 and (b) 

DC4 25% N2 Dural-CNx anodes subjected to 300 cycles each at a current density of 

0.5 mA/cm
2
 without an initial CV.  
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Figure 4-4-19: (a) First two and (b) last two galvanic cycles for non-annealed DC3 

75% N2 (red curve) and DC4 25% N2 Dural-CNx anodes (blue curve) subjected to 

300 cycles each at a current density of 0.5 mA/cm
2
 without an initial CV. Numbers 

in the figures denote the secondary and tertiary diffusion-limited plateaus.  
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Figure 4-4-20: Charge-Discharge plateau separation for the main discharge plateau 

for non-annealed DC3 75% N2 (red curve) and DC4 25% N2 (blue curve) Dural-

CNx anodes subjected to 300 cycles each at a current density of 0.5 mA/cm
2
 without 

an initial CV. For comparison, data for bare DU2 Dural anode (oxide removed) 

from Ch. 4.3 is included in black.  
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Figure 4-4-21: Coulombic efficiency data for the main discharge plateau for non-

annealed DC3 75% N2 (red curve) and DC4 25% N2 (blue curve) Dural-CNx anodes 

subjected to 300 cycles each at a current density of 0.5 mA/cm
2
 without an initial 

CV. For comparison, data for bare DU2 Dural anode (oxide removed) from Ch. 4.3 

is included in black.  
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Figure 4-4-22: Coulombic efficiencies for the secondary and tertiary diffusion-

limited discharge plateaus for non-annealed DC3 75% N2 and DC4 25% N2 Dural-

CNx anodes subjected to 300 cycles each at a current density of 0.5 mA/cm
2
 without 

an initial CV. Secondary and tertiary efficiencies of DC3 (75% N2 Dural-CNx) in 

black and red colors respectively with DC4 (25% N2 Dural-CNx) in blue and green 

colors respectively.  

 

 

The first two cycles of DC3 (75% N2 Dural-CNx) show two discharge plateaus (Fig. 4-4-

19 a). In the first cycle this is dominated by the lower discharge plateau around 0.83V 

which may again uniquely arise from delithiation from CNx itself. For the second cycle 

of DC3 the discharge is instead dominated by the intermetallic phase plateau around 

1.44V. This initial double discharge plateau behaviour was also observed in the first 

cycle of the non-annealed Al-CNx failure anode AC3 (Fig. 4-4-8). From the third cycle 

of DC3 (75% N2 Dural-CNx) onwards we only observe a single discharge plateau 

beginning around 1.37V, which should constitute lithiation-delithiation from an 

intermetallic alloy. The tertiary plateau appears at the 5th cycle at a high potential of 

2.6V with an initial CE of 2.5% (Fig. 4-4-22). As expected this tertiary process will shift 

upwards over time and be terminated early by the upper limit. Therefore it will remain as 
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a minor contribution for the entire set outside of the plateau jump cycles. There is a large 

early increase over time in the main CE consistent with initial SEI and intermetallic phase 

formation (Fig. 4-4-21). It culminates with a maximum main CE for the whole set of 

87% at the 10th cycle for DC3 (75% N2 Dural-CNx), which is higher than the value of 

71% observed for DU2 (bare Dural). This improvement in DC3 is directly due to a longer 

main plateau duration since the tertiary process contributions are minor in both cases. The 

higher maximum main CE of Dural-CNx versus Dural is consistent with the same 

behaviour observed in the failure experiments of Al-CNx versus bare GF Al earlier in this 

chapter (Fig. 4-4-10). Within this cycle region the plateau separation for DC3 shows a 

minimum of 0.8V, which is smaller than the minimum value of 1V for DU2 (Fig. 4-4-

20). This is consistent with the smaller overvoltage and plateau separation observed for 

Dural-CNx samples relative to Dural in the 4x8 experiments (Fig. 4-4-15). The secondary 

diffusion-limited plateau appears at the 30th cycle at 1.66V with an initial CE of 3% (Fig. 

4-4-22).  

 

Approaching the first jump in plateau potentials the main CE shows a steady decrease, 

together with the increasing contribution of the secondary diffusion process. The tertiary 

process gradually disappears due to the upper cycle potential limit (Figs. 4-4-21, 4-4-22). 

Here the degradation over time for the main CE of DC3 (75% N2 Dural-CNx) is larger 

than in DU2 (bare Dural). Additionally, the change in the plateau separation over time is 

considerably more severe. Both of these trends are consistent with the faster degradation 

of the main CE and drifting of plateau potentials observed in non-annealed 75% N2 Al-

CNx versus bare GF Al (Figs. 4-4-9, 4-4-10). For DC3 (75% N2 Dural-CNx) the 

secondary process CE will only reach a set maximum of 7%, unlike the maximum value 

of 15% seen in DU2 (bare Dural) (Fig. 4-4-22). This is in contrast to Al-CNx and GF Al 

failure experiments which had comparable maximum of the secondary process CEs over 

time (Figs. 4-1-12, 4-4-11). Immediately after the first plateau jump in the 92nd cycle of 

DC3, the plateau separation resets and the main CE drops further due to a shorter main 

plateau (Figs. 4-4-20, 4-4-21). As expected, the secondary process CE here remains 

unchanged and the tertiary process CE increases due to the downward potential shift (Fig. 

4-4-22). Soon after the plateau jump there is a short and small improvement of the main 
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CE because the secondary process CE temporarily decreases (Fig. 4-4-21). As the DC3 

anode continues to degrade again this will create a Christmas tree pattern for the plateau 

separation over time, which has been observed previously in this work such as in the 

failure experiment of non-annealed Al-CNx AC3 (Fig. 4-4-7). Over the span of 300 

cycles there will be four total plateau jumps for DC3 (75% N2 Dural-CNx) (Fig. 4-4-18 

a). In comparison, the bare Dural failure anode DU2 only experienced two jumps after 

300 cycles (Fig. 4-3-7), while the non-annealed Al-CNx failure anode AC3 already had 

four jumps after just 180 cycles (Fig. 4-4-7). The higher jump frequency and faster 

degradation of the main CE for Dural-CNx versus bare Dural anodes is consistent with 

the same behaviour observed in the failure experiments of Al-CNx versus bare GF Al 

anodes. Approaching the 300th cycle of DC3 the main CE will continue to decrease due 

to a shortening of the main plateau. This further degradation is unrelated to the secondary 

diffusion process as that CE has not increased beyond 7% (Fig. 4-4-22). 

 

For the DC4 (25% N2 Dural-CNx) anode there is no initial double discharge behaviour 

(Fig. 4-4-19 a). Instead we immediately observe only a single discharge plateau at 1.25V. 

However this first cycle shows significantly more diffusion-limited behaviour than the 

first cycle of DC3 (75% N2). The tertiary diffusion process is already present around 

2.14V with an initial efficiency of 5% (Fig. 4-4-22). This is consistent with the 4x8 

experiments of the 25% N2 (DC2) and 75% N2 (DC1) Dural-CNx anodes (Fig. 4-4-16, 4-

4-17). Like in DC3 this tertiary process in DC4 will soon become minor and only spike at 

the plateau jump cycles. The main CE of DC4 rapidly increases to a maximum value of 

85% at the 15th cycle (Fig. 4-4-21). Within this region the plateau separation shows a 

minimum of 1V, which is larger than the minimum value of 0.8V in DC3 (Fig. 4-4-20). 

This is consistent with the larger overvoltage and plateau separation observed in the 4x8 

experiments of 25% N2 versus 75% N2 Dural-CNx anodes (Figs. 4-4-13, 4-4-15). In DC4 

(25% N2 Dural-CNx) the secondary diffusion-limited plateau appears at the 25th cycle at 

1.52V with an initial CE of 2% (Fig. 4-4-22). 

 

Approaching the first jump in plateau potentials we observe the typical trends of main CE 

decreasing, secondary process CE increasing and tertiary process CE decreasing due to 
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the upper cycle potential limit (Figs. 4-4-21, 4-4-22). Both the main CE degradation and 

the plateau separation change over time in DC4 (25% N2) here are comparable to DC3 

(75% N2). For DC4 the secondary process CE will reach a set maximum of 9%, then 

steadily decrease and remain at 7% (Fig. 4-4-22). Immediately after the first plateau jump 

in the 92nd cycle of DC4 the plateau separation resets and the main CE is unchanged 

(Figs. 4-4-20, 4-4-21). As expected the secondary process CE here remains unchanged 

and the tertiary process CE increases due to the downward potential shift (Fig. 4-4-22). 

Even though the secondary process CE will briefly decrease for a few cycles following 

the jump, the plateau separation and main CE will continue to degrade without any 

temporary improvement (Figs. 4-4-20, 4-4-21). While the degradation of DC4 (25% N2) 

is comparable to DC3 (75% N2) approaching the first jump, it will now be more severe 

beyond this point. This again results in a Christmas tree pattern for DC4 with eight 

plateau jumps across 300 cycles (Fig. 4-4-18 b). Even though the jump frequency for 

DC4 is much higher the amplitude of the jumps over time is still comparable to DC3 

(Fig. 4-4-20). Approaching the 300th cycle of DC4 the main CE will continue to decrease 

due to a shortening of the main discharge plateau (Fig. 4-4-19 b). This further 

degradation is unrelated to the secondary diffusion process as that CE has steadily 

decreased from its maximum of 9% (Fig. 4-4-22). 

  

4.4.2 SEM images 

 

Shown in Fig. 4-4-23 are SEM images of the uncycled areas of the non-annealed (AC1) 

and annealed (AC2) Al-CNx anodes, as well as the reference bare GF Al anode (GF1) 

from Ch. 4.1. In both cases the uncycled Al-CNx morphology is dominated by the 

etching pattern of the Al substrate, with higher magnification revealing the fine grain 

structure of the overlaying CNx film (Fig. 4-4-23 b-c). Fig. 4-4-24 shows the cycled 

areas of the same Al-CNx samples at different magnifications after being subjected to the 

4x8 experiments. The non-annealed Al-CNx (AC1) shows a homogenous porous alloy 

morphology (Fig. 4-4-24 c), very similar to that observed for bare GF Al in Ch. 4.1.2 

(Fig. 4-1-13 b). Overlaying this porous structure are relatively flat remnants of a thin 

film, which upon closer observation strongly resemble the fine grains of CNx in the 
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uncycled area (Fig. 4-4-24 a). The annealed sample AC2 under 4x8 conditions shows the 

opposite behaviour (Fig. 4-4-24 b-d). The remaining CNx is not found at the surface of 

the porous structure. Instead the CNx film appears to be located inside and below the 

porous alloy, which suggests that it may be incorporated in the growing LiAl phase, or 

buried under this phase during its growth. Therefore the annealing treatment appears to 

offer improved adhesion and stability for the film.  

 

 

 

 

 

Figure 4-4-23: SEM images of uncycled  areas for (a) bare GF Al (GF1), (b) non-

annealed (AC1) 75% N2 Al-CNx, (c) annealed (AC2) 75% N2 Al-CNx anodes. 

Magnifications of 10000x. 
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Figure 4-4-24: SEM images of cycled  areas for (a-b) non-annealed (AC1) 75% N2 

Al-CNx, (c-d) annealed (AC2) 75% N2 Al-CNx anodes. Magnifications of (a,c) 1000x 

(b,d) 10000x. 

 

 

Fig. 4-4-25 shows the cycled area of the non-annealed Al-CNx failure anode (AC3) at 

various magnifications, as well as the reference bare GF Al failure anode (GF5) from Ch. 

4.1. Pushing the Al-CNx anode towards failure again creates some large scale cracking, 

observed at the lowest magnification (Fig. 4-4-25 d). However both the size of these 

cracks and their coverage across the entire cycled area appear to be considerably lower 

than in the analogous bare GF Al anode under failure cycling (GF5) (Fig. 4-4-25 a). This 

suggests containment of the volume changes and improvement of the mechanical stability 

by the CNx film even after extended cycling. Closer inspection reveals that the remaining 
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CNx are still found at the surface as blocky patches both on top and wrapped around 

various portions of the porous intermetallic alloy (Fig. 4-4-25 e-f). The highest 

magnification images reveal quite similar nanostructures developed upon cycling for bare 

GF Al (oxide removed) (GF5) and non-annealed Al-CNx (AC3), except for some 

residual CNx still observed in the latter image. Essentially the non-annealed Al-CNx 

failure anode (AC3) appears to follow the trends developing with the non-annealed Al-

CNx anode in 4x8 experiments (AC1) (Fig. 4-4-24 a-b), with the residual CNx 

progressively cracked into smaller pieces. The significant pulverization of the CNx film 

here may help explain the dramatically worse reversibility and plateau separation trends 

observed in the galvanic cycles of AC3 between the first and second plateau potential 

jumps (Figs. 4-4-9, 4-4-10). 
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Figure 4-4-25: SEM images of cycled  areas for (a-c) bare GF Al (oxide removed) 

(GF5) (d-f) non-annealed Al-CNx (AC3), subjected to 140 and 180 cycles each 

respectively at a current density of 0.5 mA/cm2 without an initial CV. 

Magnifications of (a,d) 100x, (b,e) 1000x, (c,f) 10000x. 
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Shown in Fig. 4-4-26 are SEM images of the uncycled areas of the non-annealed 75% N2 

(DC1) and 25% N2 (DC2) Dural-CNx anodes, as well as the reference bare Dural anode 

(DU1) from Ch. 4.3. For both CNx coated samples the uncycled morphology is 

dominated by the rough pitted etching pattern of the Dural substrate (Fig. 4-4-26 b-c), 

with the finer details of the CNx grain structure at higher magnification (Fig. 4-4-26 d). 

Fig. 4-4-27 shows the cycled areas of the same Dural-CNx samples at different 

magnifications after being subjected to the 4x8 experiments. The 75% N2 Dural-CNx 

sample (DC1) shows a cycled morphology that is quite distinct from that described above 

for the analogous non-annealed 75% N2 Al-CNx sample AC1. There is a roughly equal 

mixture of flat and porous regions (Fig. 4-4-27 a), indicating significantly limited 

lithiation-delithiation reactivity similar to that observed for bare Dural in Ch. 4.3.2. The 

flat regions of DC1 strongly resemble the uncycled areas (Fig. 4-4-26 b). While the CNx 

remnants in the non-annealed Al-CNx sample (AC1) were overlaid on the porous alloy 

(Fig. 4-4-24 a), here in DC1 they are instead located near the metal substrate. This 

confirms that the phase formation for Dural-CNx is quite different than with Al-CNx. It 

may help explain the electrochemical differences observed in the CVs and galvanic 

cycles for these series of anodes both in the 4x8 and the failure experiments. Therefore, 

the containment of the volume change in Dural through the use of CNx coatings and the 

associated changes in conductivity should be different than in GF Al. Cycling Dural-CNx 

with lower nitrogen content under 4x8 conditions (DC2) produces again a heterogeneous 

morphology similar to that described above for DC1 (75% N2). However the porous 

regions are now much more numerous and occupy more surface area (Fig. 4-4-27 c). This 

suggests increased lithiation-delithiation reactivity of Dural-CNx with decreased nitrogen 

content in the CNx film, which is unusual given the smaller lithiation-delithiation 

currents observed for this sample in the CV (Fig. 4-4-13). Despite these differences 

between the two Dural-CNx samples the higher magnification images reveal very similar 

porous morphology (Fig. 4-4-27 b,d). Therefore a similar nanostructure is formed in both 

cases. 
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Figure 4-4-26: SEM images of uncycled areas for (a) bare Dural (DU1), (b) non-

annealed 75% N2 (DC1) Dural-CNx, (c) non-annealed 25% N2 (DC2) Dural-CNx 

anodes. Magnifications of 10000x. Image (d) shows higher magnification (25000x) of 

image (b).  
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Figure 4-4-27: SEM images of cycled areas for (a-b) non-annealed 75% N2 (DC1) 

Dural-CNx, (c-d) non-annealed 25% N2 (DC2) Dural-CNx anodes. Magnifications of 

(a,c) 100x, (b,d) 10000x.  

 

Fig. 4-4-28 shows the cycled areas of the non-annealed 75% N2 (DC3) and 25% N2 

(DC4) Dural-CNx failure anodes. The DC3 sample (Fig. 4-4-28 a-b) shows an overall 

porous cycled morphology that is considerably more homogenous than the 4x8 version 

(Fig. 4-4-27 a). It is very similar to the bare Dural failure anode in Ch. 4.3.2 with full 

reactivity, large porous cluster size and no cracks present. This should be attributed to 

longer cycling and repeated formation and pulverization of the LiAl phase for the failure 

samples. Unlike the non-annealed Al-CNx failure anode (AC3), no residual CNx film 

seems to appear in this Dural-CNx failure anode. This was confirmed by EDX analysis, 

with no nitrogen content found anywhere throughout the cycled area of this Dural-CNx 

failure anode. It suggests that the CNx remaining after prolonged cycling of Dural-CNx is 

buried underneath several micrometers of intermetallic alloy, possibly near the interface 

with the Dural substrate. Pushing the Dural-CNx anode with lower nitrogen content 
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towards failure in DC4 (25% N2) again produces a homogenous porous morphology very 

similar to that described above for DC3 (75% N2) (Fig. 4-4-28 c-d). Once again, no 

residual CNx film is found after prolonged cycling. Therefore, the lower nitrogen content 

in the CNx film does not appear to affect the resulting morphology for Dural-CNx under 

these failure conditions. Both Dural-CNx samples do not visibly crack under failure 

conditions and the nanostructure produced is similar. 

 

 

 

Figure 4-4-28: SEM images of cycled areas for (a-b) 75% N2 (DC3) Dural-CNx, (c-d) 

25% N2 (DC4) Dural-CNx anodes subjected to 300 cycles each at a current density 

of 0.5 mA/cm
2
 without an initial CV. Magnifications of (a,c) 100x, (b,d) 1000x.  

 

Finally shown in Fig. 4-4-29 is a comparison of the cycled areas for the non-annealed 

75% N2 Al-CNx (AC3) and the non-annealed 75% N2 Dural-CNx (DC3) failure anodes 

presented earlier in separate figures. Here we observe that both porous morphologies are 

fairly stable. With Dural as the substrate the nanostructure produced is rougher (Fig. 4-4-
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29 c-d), and with GF Al as the substrate there is more evidence of cracking (Fig. 4-4-29 

a-b). However, the fine morphology of the LiAl phase formed is quite similar in both 

cases. 

 

 

 

Figure 4-4-29: SEM images of cycled areas for (a-b) 75% N2 Al-CNx (AC3), (c-d) 

75% N2 Dural-CNx (DC3) anodes subjected to 180 and 300 cycles each respectively 

at a current density of 0.5 mA/cm
2
 without an initial CV. Magnifications of (a,c) 

100x, (b,d) 1000x.  
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4.4.3 EDX Composition Charts 

 

Shown in Table 4-4-30 is the EDX composition data of the uncycled, cycled porous and 

cycled flat  areas of the non-annealed (AC1) and annealed (AC2) 75% N2 Al-CNx anodes 

after being subjected to the 4x8 experiments as well as the non-annealed 75% N2 Al-CNx 

anode (AC3) after being subjected to 180 cycles at a current density of 0.5 mA/cm2. For 

Al-CNx the predominance of Al with small amounts of nitrogen within the uncycled area 

indicates an unreactive Al-CNx anode with surface contamination by the electrolyte 

(a,d,g). Carbon and oxygen content should arise from a combination of trace propylene 

carbonate and residual surface oxide present after the electrode preparation before film 

deposition. The CNx film will contribute carbon as well as 5 to 10 percent nitrogen. The 

resulting very low uncycled oxygen content of a few percent is expected given the 

polished and etched preparation before CNx film deposition. Trace phosphorus and 

fluorine content should arise from LiPF6 salt remaining after rinsing. The small amount 

of silicon detected is likely again due to a combination of silicon carbide paper used for 

polishing, and as an impurity in the Al alloy itself. Lithium content cannot be monitored 

due to the overlap of its low energy x-rays with the baseline peak close to 0 eV.  

 

Both porous and flat cycled areas of AC1 (non-annealed Al-CNx) show significantly 

elevated oxygen and fluorine content (b,c). This is likely due to the presence of 

electrolyte within the intermetallic structure, as well as the products of solvent 

electroreduction and salt decomposition in the SEI layer [8]. Nitrogen content within the 

porous region is very low at around 1% (b), and much higher in the flat area around 9% 

(c). This again suggest that CNx partially impedes the growth of LiAl. The large Al 

content of 26% observed within the flat region (c) is likely due to the 7 kV column 

voltage which roughly corresponds to a profiling depth of 100 nm. Therefore spectra 

acquisition of the flat remnants in the non-annealed sample will to some extent also 

profile the composition of the porous intermetallic structure underneath. The contrast in 

the nitrogen content between these two cycled areas supports our previous statements as 

to the location of the CNx film after lithiation-delithiation. For non-annealed Al-CNx 
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(AC1) the CNx coating rapidly cracks and becomes detached from the Al core with the 

remnants sitting on top of the intermetallic structure (Fig. 4-4-24 a). 

 

Table 4-4-30: EDX composition chart of uncycled and cycled areas of non-annealed 

(AC1) and annealed (AC2) Al-CNx anodes after being subjected to 4x8 experiments 

and non-annealed Al-CNx anode after being subjected to 180 cycles at a current 

density of 0.5 mA/cm
2
 (AC3). Spectra were collected at a column voltage of 7 kV for 

50 seconds at 1000x magnification.  

 

 Atomic %  

Sample Area C  N  O  F  Al  Si  P  

AC1 (a)Uncycled  31.84  10.14  2.05  0.32  55.50  0.13  0.02  

 (b)Porous  14.62  1.76  24.99  24.61  33.00  0.10  0.92  

 (c) Flat  30.89  9.40  16.02  16.79  26.08  0.15  0.66  

AC2  (d) Uncycled  30.68  8.48  2.18  0.24  58.16  0.15  0.11  

 (e) Porous  7.15  1.02  18.13  39.35  33.04  0.23  1.08  

 (f) Flat  26.58  7.03  5.17  9.11  51.84  0.15  0.14  

AC3 (g)Uncycled  27.99  9.47  2.43  0.62  59.09  0.35  0.05  

 (h)Porous  3.51   8.49  57.04  28.69  0.75  1.52  

 (i)Flat  26.25  12.97  10.19  35.02  12.28  0.95  2.35  
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The composition of the cycled porous (e) and flat (f) regions in the annealed sample 

(AC2) strongly resemble the cycled porous (b) and uncycled (a) areas of non-annealed 

AC1. Therefore, the remaining CNx in AC2 is instead located close to the film-metal 

interface, likely due to increased film adhesion and stability (Fig. 4-4-24 c-d). The 

composition of the cycled porous area of the non-annealed Al-CNx failure anode (AC3) 

(h) resembles the cycled porous area of AC1 (b) with no nitrogen content and 

significantly higher F:O and F:Al ratios. In contrast, the blocky fine-grained patches 

nearby show a strong nitrogen signal (i). This confirms our assessment from the SEM 

images of AC3 that the CNx film has been pulverized significantly into very small 

warped pieces (Fig. 4-4-25 e-f). Similar to uncoated anode failure experiments from Ch. 

4.1 to 4.3, the elevated fluorine content here should predominantly come from the LiPF6 

electrolyte. As described in the CV section, the continued lithiation-delithiation of Al-

CNx will cause some degree of additional SEI formation beyond the first cycle (Fig. 4-4-

1). With sustained cycling in AC3 mechanical stresses will accumulate and result in 

cracking in both the CNx film and the underlying intermetallic structure. This will 

continuously cause partial destruction of the SEI present in both regions and also expose 

fresh Al material for more SEI formation. As before the LiPF6 salt is also expected to 

thermally degrade over time into LiF and PF5 if any trace moisture content is present [9].  

 

Shown in Table 4-4-31 is the EDX composition data of the uncycled, cycled porous and 

cycled flat  areas of the non-annealed 75% N2 (DC1) and 25% N2 (DC2) Dural-CNx 

anodes after being subjected to the 4x8 experiments as well as the non-annealed 75% N2 

(DC3) and 25% N2 (DC4) Dural-CNx anodes after being subjected to 300 cycles each at 

a current density of 0.5 mA/cm2. For uncycled areas of Dural-CNx samples the 

composition will be similar to uncycled Al-CNx but with small amounts of Cu and Mg 

present (a,d,g,i). Overall the EDX data appears to support our hypothesis made 

previously from the SEM imaging. The composition of the porous regions in DC1 (75% 

N2) (b) and DC2 (25% N2) (e) is similar to that observed for porous regions in the bare 

Dural anodes in Ch. 4.3.3, with minimal nitrogen content present. As predicted the flat 

lowered regions in DC1 (c) and DC2 (f) show strong nitrogen signals, with a composition 

resembling  partially reactive versions of their uncycled areas (a,d). The 4x8 Dural-CNx 
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sample prepared under 25% N2 plasma (DC2) has a similar composition to DC1 with 

predictably less nitrogen content in both the flat and uncycled areas. The composition of 

Dural-CNx failure samples DC3 (75% N2) (h) and DC4 (25% N2) (j) resemble the cycled 

porous area of DC1 (75% N2) with significantly higher fluorine content and a lack of 

nitrogen content (b). This confirms that most of the CNx remaining after extended 

lithiation-delithiation of Dural-CNx must be buried underneath the intermetallic alloy. 

This is again distinctly different from the fresh Al-CNx failure anode (AC3) in which the 

porous intermetallic alloy is overlaid in several areas by nitrogen-rich CNx remnants.  
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Table 4-4-31: EDX composition chart of uncycled and cycled areas of non-annealed 

75% N2 (DC1) and 25% N2 (DC2) Dural-CNx anodes after being subjected to 4x8 

experiments, and non-annealed 75% N2 (DC3) and 25% N2 (DC4) Dural-CNx 

anodes after being subjected to 300 cycles each at a current density of 0.5 mA/cm
2
. 

Spectra were collected at a column voltage of 7 kV for 50 seconds at 1000x 

magnification.  

 

 Atomic %  

Sample Area C  N  O  F  Mg  Al  Si  P  Cu  

DC1  (a)Uncycled  31.42  12.13  2.64  0.25  0.65  51.05  0.25  0.04  1.58  

 (b)Porous  3.62   18.04  45.72  0.16  25.24  5.75  0.81  0.66  

 (c) Flat  27.90  10.61  4.87  6.72  0.57  46.78  1.05  0.05  1.44  

DC2 (d)Uncycled  25.71  8.00  3.21  1.16  0.78  58.88  0.16  0.13  1.97  

 (e) Porous  9.66  0.64  25.63  36.19  0.34  26.03  0.25  0.48  0.78  

 (f) Flat  22.16  5.59  3.89  11.86  0.54  53.81  0.07  0.11  1.99  

DC3  (g)Uncycled  30.60  11.92  3.24  0.58  0.59  51.14  0.22   1.71  

 (h)Porous  1.97   9.57  65.48  0.14  21.51  0.07  0.79  0.47  

DC4  (i)Uncycled  25.01  7.83  2.46  0.86  0.72  60.92  0.27   1.93  

 (j) Porous  1.85  0.40  9.18  64.31  0.21  22.51  0.41  0.57  0.57  
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4.4.4 Conclusions for this chapter 

 

We may conclude that for Dural anodes, similarly to GF Al, CNx films initially improve 

the reversibility of lithiation-delithiation, when considering the early cycling performance 

of DC3 (75% N2 Dural-CNx) and DC4 (25% N2 Dural-CNx) relative to DU2 (Dural) 

(Fig. 4-4-21). Even when the efficiency of the main discharge plateau begins to degrade 

for DC3 it still remains better than DU2 for two reasons. Firstly, the presence of the CNx 

coating notably decreases the appearance of secondary and tertiary diffusion-limited 

discharge plateaus in Dural, directly increasing the duration of the main discharge plateau 

(Fig. 4-4-22). This is consistent with the decreased diffusion-limited delithiation 

behaviour observed in the 4x8 experiments for 75% N2 Dural-CNx (DC1) relative to 

Dural (DU1) (Figs. 4-4-16, 4-4-17) but in contrast to the behaviour observed with Al-

CNx samples (Figs. 4-4-6, 4-4-7). Secondly, repeated plateau jump events in Dural-CNx 

allow for multiple temporary improvements in efficiency. Decreasing the nitrogen 

content in DC4 (25% N2) produces faster efficiency degradation and higher jump 

frequency, possibly due to the decreased mechanical stability of the CNx film. The Dural 

substrate appears to offer increased mechanical toughness against pulverization of the 

intermetallic alloy. Additionally the CVs and 4x8 experiments of Dural-CNx anodes 

suggest a phase formation that is quite different from that of Al-CNx anodes. Together 

these details may help explain the slower degradation observed here for the non-annealed 

75% N2 Dural-CNx anode (DC3) (Figs. 4-4-20, 4-4-21) relative to the non-annealed 75% 

N2 Al-CNx anode (AC3) described earlier in the chapter (Figs. 4-4-9, 4-4-10). Both 

Dural-CNx and Al CNx showed quite ordered nanoscale morphology However, the 

coulombic efficiencies for the Dural anodes remained too low and the drift in the 

charging-discharging potentials too severe for the Dural anodes to have any possible 

applications in Li ion batteries.  

 

As for Al-CNx anodes, we see that there is significant positive effect of CNx in the 

beginning, which, however, largely disappears by the 40th-50th cycle. The CNx coated 

Al anodes still experience unacceptably large potential jumps and decrease in the 

efficiency. This indicates that CNx coating alone is not able to improve the performance 
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of Al-based anodes to the point that it they will be suitable for the use in practical Li ion 

batteries. 
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4.5 Composite Anodes 

 

Summary 

 

In Ch. 4.1 to 4.4 we investigated the lithiation-delithiation behaviour of a variety of 

anode systems in which the bulk Al metal substrate was the only source of Al available 

for intermetallic phase formation. In the literature the optimization of Al anode 

performance is solely focused on the use of nanostructured anodes such as nanowires and 

thin films. Here we examine the effects on lithiation-delithiation of thin and therefore soft 

Al films relative to the crystalline bulk Al substrates. An additional advantage of this 

approach is that with thin Al films, as opposite to bulk Al anodes, we know the mass of 

the Al available and thus can determine the specific capacities of our Al anodes, that is, 

the amount of charge that an electrode can store per unit weight of the active material.  

 

A variety of multilayer structured anodes were prepared on both half-hard Goodfellow Al 

and half-hard copper substrates with the surface oxide removed, using radiofrequency 

magnetron sputtering for deposition of Al thin films. Copper was used as substrate 

because it is known to be non-reactive towards Li intercalation or alloy formation. Half-

hard GF Al was chosen as the substrate for the Al-Al and Al-Al-CNx samples instead of 

soft McMaster-Carr (MC) Al. This choice was made due to the strain-hardening of GF Al 

offering improved structural stability in repeated scanning and cycling of the resulting 

intermetallic alloy (Ch 4.1 and 4.2). In addition to the amorphous Al thin film layer these 

anodes have zero, one or two CNx layers also present. The role of CNx was twofold. 

First, CNx films deposited on top of Al films were expected to affect the volume changes 

and kinetics of the reduction of Li ions, as was discussed in the previous chapters. The 

CNx underlayers were supposed to affect the internal strain buildup in the deposited Al 

layer and again help to absorb some of the volume changes. Reactions between the 

components of the CNx layer and LiAl intermetallic phase also could not be excluded.  
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The first sample ACM1 was prepared with 25 nm of sputter-deposited Al film on oxide-

free GF Al using a power  of 50 W, 2 Pa pressure and pure Ar plasma. The second 

sample ACM2 was prepared similarly to ACM1 with an additional deposition step to 

yield 75 nm CNx film at 50 W, 1 Pa and 75% N2 plasma. The third sample ACM3 was 

prepared identically to ACM2 and then underwent post-deposition thermal annealing at 

150oC for 2 hours. For both Al and CNx thin film depositions, the magnetron power of 50 

W was chosen to achieve both a reasonable deposition rate and film stability in solution 

[1-2]. The lower deposition pressure of 1 Pa for CNx was chosen to make the resulting 

film more dense and less disordered [3-5]. As in the Al-CNx anodes presented in Ch. 4.4 

we were interested in films with significant nitrogen incorporation, which produce 

stronger and more adherent films. From preliminary tests with Al-CNx samples of 

different nitrogen contents we determined that 75% N2 plasma has the optimal 

performance. Therefore the same plasma composition was chosen for Al-Al-CNx, Cu-Al-

CNx and Cu-CNx-Al-CNx samples. 

 

These samples were characterized electrochemically in 4x8 experiments, which begin 

with a cyclic voltammogram (CV) for three scans, followed by four sets of eight galvanic 

cycles at progressively higher current densities. In the initial CV of non-annealed Al-Al 

(ACM1) we observed increased SEI formation relative to bare half-hard GF Al (GF1), 

with multiple distinct lithiation and delithiation processes. Addition of CNx to non-

annealed (ACM2) and annealed (ACM3) Al-Al-CNx anodes resulted in further increases 

of SEI formation with some evidence of volume change containment during intermetallic 

phase formation. In the galvanic cycles we observed multiple distinct charge and 

discharge plateaus at the lowest current density with accompanying reversibility that was 

initially very poor relative to bare half-hard GF Al (GF1). As the systems were 

conditioned at lower current densities, the charge/discharge behaviour transitioned into 

single plateaus and the performance became comparable to GF Al. Surface analysis of the 

Al-Al (ACM1) and especially both Al-Al-CNx (ACM2 and ACM3) samples after 

electrochemistry revealed a unique honeycomb porous morphology distinct from that 

observed in bare GF Al (GF1) or Al-CNx (AC1, AC2) samples.  
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For copper-based anodes the first sample CM1 was prepared with 25 nm of Al film 

deposited on oxide-free Cu at 50 W, 2 Pa and pure Ar plasma. followed by an additional 

deposition step consisting of 75 nm of non-annealed CNx at 50 W, 1 Pa and 75% N2 

plasma. The second sample CM2 was prepared identically to CM1 and then underwent 

post-deposition thermal annealing at 150 oC for 2 hours. The third sample CM3 was 

prepared identically to CM1 with an additional 75 nm CNx underlayer deposited first 

between the Cu substrate and the Al film. Finally the fourth sample CM4 was prepared 

similarly to CM3 with the layer thicknesses changed to 25 nm CNx, 75 nm Al and 50 nm 

CNx. These samples were also characterized electrochemically in 4x8 experiments. In the 

initial CVs we observed further increases in SEI formation relative to Al-Al-CNx anodes, 

with multiple distinct lithiation and delithiation processes depending on the sample. In 

the galvanic cycles we initially observed multiple charge and discharge plateaus at lower 

current densities which gradually transitioned to single charge and discharge plateaus at 

higher current densities. Even with the total duration of both discharge processes 

considered together the resulting coulombic efficiencies were quite poor relative to Al-

Al-CNx, Al-CNx and other anode systems presented previously in this thesis work. These 

samples also could not withstand cycles at high current densities. Surface analysis after 

electrochemistry in all cases revealed very rough heterogeneous surfaces as compared to 

Al-CNx and Al-Al-CNx anode systems with multiple reactive and non-reactive domains. 

 

4.5.1 Cyclic Voltammograms, Galvanic Cycles, Calculations 

 

Al thin film anodes on GF Al substrate 

 

The typical features of CVs with bare Al anodes were described previously in Ch. 4.1.1. 

Therefore this section will focus only on differences observed in the CV features of Al-Al 

based anodes relative to bare half-hard GF Al anodes with the oxide removed. First we 

consider the partial cathodic scans between 2.0V and 0.2V vs. Li+/Li reference electrode 

(Fig. 4-5-1). For the purposes of comparison the bare GF Al anode GF1 (oxide removed) 

from Ch. 4.1 is included. The bolded numbers 1 to 4 denote the GF1, ACM1, ACM2, and 
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ACM3 samples respectively (1, bare GF Al; 2, non-annealed Al-Al; 3, non-annealed Al-

Al-CNx; 4, annealed Al-Al-CNx). 

 

 

Figure 4-5-1: Initial cyclic voltammograms of non-annealed Al-Al and non-annealed 

and annealed Al-Al-CNx anodes ACM1 (2, red), ACM2 (3, blue) and ACM3 (4, 

green). Comparative bare half-hard GF Al anode GF1 (1) from Ch. 4.1 is also 

included in black. Partial cathodic scans from 2V to 0.2V to highlight SEI formation 

and lithiation onset behaviour.  

 

First of all, we see that the lithiation onset potential is heavily affected by the structure of 

the electrode. Addition of a sputtered Al layer (ACM1) shifts the onset towards less 

negative potentials, which indicates that formation of the LiAl intermetallic phase occurs 

easier at the thin-film Al electrode as compared to bulk Al. The sputter-deposited thin Al 

film in ACM1 should be mechanically softer as compared to the GF bulk Al substrate. 

This should result in the increased ease of three-dimensional volumetric expansion of the 

LiAl nanostructure and less energy and therefore less overvoltage required for the 

formation of the new LiAl phase. Addition of CNx on top of Al film (ACM2. ACM3) 

shifts the onset towards more negative potentials, especially for annealed films. This 
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indicates an increase in the overvoltage of LiAl formation for CNx coated electrodes. The 

reasons here may be the additional IR drop at the electrode due to added resistance of 

CNx films and the limitation of the volumetric expansion by the CNx films.  

 

The Al-Al (ACM1) sample shows larger SEI formation currents relative to bare GF Al 

(GF1), which could be related to increased surface roughness of the Al thin film layer. 

Both Al-Al-CNx samples (ACM2, ACM3) show further amplification of this effect. This 

can be related to difference kinetics and mechanism of the reactions of the solution 

components on the CNx surface. Furthermore, GF1 as described previously in Ch. 4.1 

shows a distinct reduction peak around 1.0V, which is the typical potential range 

observed for SEI formation on Al nanowires [7]. The Al-Al (ACM1) sample has instead 

a peak shifted lower around 0.75V. Non-annealed Al-Al-CNx (ACM2) has a local current 

minima at 1.0V which may be considered a peak. Annealed Al-Al-CNx (ACM3) instead 

shows a large broad SEI peak around 0.6V. This peak in ACM3 is not related to the 

lithiation onset potential because the current becomes smaller afterwards, and then does 

not drop significantly until closer to 0.25V. The peaks present in both Al-Al-CNx 

samples are in contrast to the broad SEI formation observed in both Al-CNx samples of 

Ch 4.4 (Fig. 4-4-1), as well as a similar broadening effect observed for increased surface 

oxide content on GF Al and MC Al substrates in Ch. 4.1 and 4.2 (Figs. 4-1-2, 4-2-1). 

Therefore, this behaviour should be related to the presence of the sputter-deposited Al 

thin film. Additional scanning in the CV will produce larger amounts of additional SEI 

formation for Al-Al (ACM1) relative to bare GF Al (GF1), with this formation further 

increased in CNx coated ACM2 and ACM3. This indicates the formation of porous 

nanostructure with the SEI forming at the inner walls of the nanopores. The accumulation 

of large amounts of solution components inside the nanostructure was also noted by 

TOF-SIMS depth profiling (see Ch. 4.6). 

 

Next we compare the full CV scans of all samples in Fig. 4-5-2. First we observe that 

there are multiple lithiation and delithiation processes present, which should be attributed 

to the differences in kinetics and mechanism of lithiation-delithiation processes on soft 

sputtered Al thin film and underlying hard crystalline substrate. The non-annealed Al-Al 
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(ACM1) sample shows a well defined cathodic peak around 0.35V which is consistent 

with lithiation observed in amorphous Al thin films, thin Al foils and nanowires anodes 

[7-8]. The lithiation process starts considerably earlier compared to bulk Al (GF1), as has 

been already mentioned. The main delithiation peak for this sample is also shifted to 

more negative potentials as compared to bulk Al (GF1) indicating that less overvoltage is 

required for delithiation. Interestingly, this peak also has a shoulder at more positive 

potentials, which may indicate delithiation of the underlying bulk Al. The fact that we 

observe a shoulder only may be related to the fact that this Al-Al sample (ACM1) had a 

slightly more positive left vertex and thus the lithiation of the underlying substrate was 

limited. The annealed Al-Al-CNx (ACM3) shows a similar cathodic peak but which is 

shifted negatively, likely due to the increased resistance caused by the nitrogen-rich CNx 

layer [9]. However this cathodic peak is not present in non-annealed Al-Al-CNx (ACM2) 

and lithiation simply continues past the onset potential until it is terminated by the left 

vertex. This may indicate more disorder and amorphous character in the non-annealed 

electrode, accompanied by higher resistivity. The increasing cathodic currents observed 

below 0.3V near the left vertex of ACM2 and ACM3 are likely related to lithiation of 

bulk Al following lithiation of the Al film. Following two lithiation processes, we also 

observe two delithiation peaks here. The earlier peak around 1V should be related to 

delithiation of the Al thin film, whereas the second peak around 1.2V should be the 

delithiation of the bulk Al. One can see that the annealed Al-Al-CNx anode showed the 

greatest extent of lithiation-delithiation of the bulk Al substrate. The slight shift in the 

potential of the 1st delithiation peak in non-annealed Al-Al-CNx sample may again 

indicate a greater disorder and higher resistivity. The loop areas for both Al-Al-CNx 

samples (ACM2, ACM3) near the left vertex are very small relative to bare GF Al (GF1). 

This suggests that the CNx coating is able to contain the volume change of intermetallic 

phase formation even when it is deposited on a soft Al thin film layer.  
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Figure 4-5-2: Initial cyclic voltammograms of non-annealed Al-Al ACM1 (2, red) 

and non-annealed and annealed Al-Al-CNx anodes ACM2 (3, blue) and ACM3 (4, 

green). Comparative bare half-hard GF Al anode GF1 (1) from Ch. 4.1 is also 

included in black.  

 

Shown in Fig. 4-5-3 in blue color are the features of a typical set of galvanic cycles for 

non-annealed Al-Al-CNx (ACM2) at the lowest current density of 0.13 mA/cm2 

immediately following the initial CV, with the comparative cycle set of the bare  half-

hard GF Al anode GF1 (oxide removed) in black color. Overall we observe multiple 

charge and discharge plateaus consistent with the CV behaviour (Fig. 4-5-2). Therefore 

the diagram has been modified here from previous sub-chapters. The higher potential 

charge plateau 2 should be Al thin film lithiation followed by the lower potential charge 

plateau 3 for bulk Al lithiation. Following the IR jump we have Al thin film delithiation 5 

followed by bulk Al delithiation 6. Cycling at this first current density will gradually 

transition the system into single charge/discharge plateau behaviour indicative of a single 

composite intermetallic phase. The progression of this double delithiation plateau 

behaviour and the resulting effects on reversibility will be discussed in the next figures 

for each sample.  
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Figure 4-5-3: Typical galvanic cycles for lithiation/delithiation of an Al-Al-CNx 

anode (blue). This is sample ACM2 in which the Al and CNx films were deposited 

prior to electrochemical scans. Comparative bare half-hard GF Al anode GF1 

(oxide removed) from Ch. 4.1 is also included (black). Numbers indicate the features 

of interest in ACM2: (1) potential overshot (2) Al film charge plateau (3) bulk Al 

charge plateau (4) IR drop (5) Al film discharge plateau (6) bulk Al discharge 

plateau (7) discharge tail. Galvanic cycles are shown at a current density of 0.13 

mA/cm
2
. 

 

Importantly, the fact that we have well separated plateaus for the charging portion of the 

galvanic cycles allows us to determine the specific capacities for the processes in 

question. Usually, we have bulk Al anodes and therefore the mass of Al available for 

lithiation is unlimited. Here we know the thickness of the sputtered Al layer and thus can 

determine its mass. From the duration of the first charging plateau we know the 

associated charge. Using the following data: first plateau duration 185 s; current 0.13 

mA/cm2, thickness 25 nm; density 2.7 g cm-3, we find that the specific capacity for the 
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first process is 989 mA·h/g. This is very close to the theoretical specific capacity of LiAl 

formation, which is equal to 993 mA·h/g [7]. Therefore, this result confirms that indeed 

the first plateau in the charging cycle corresponds to lithiation of sputtered Al layer, with 

the resulting stoichiometry of the alloy being LiAl. When the whole sputtered layer is 

converted into LiAl, lithiation of the bulk Al substrate starts. It occurs at more negative 

potentials because more energy is required for the associated volume changes in the bulk 

material. Note that while it may appear that the lithiation potential for the bulk Al 

substrate is more negative in the Al-Al-CNx sample than in bulk GF Al, this difference is 

due to the resistance of the additional CNx layer.  

 

Shown in Fig. 4-5-4 are the set of galvanic cycles of Al-Al and non-annealed and 

annealed Al-Al-CNx anodes ACM1, ACM2, ACM3 in red, blue and green colors 

respectively at this current density of 0.13 mA/cm2. The comparative cycle set of the bare 

GF Al anode GF1 is included in black color. For the Al-Al sample without CNx, ACM1 

(red), the double delithiation behaviour transitions into single plateaus fairly quickly by 

the second cycle. Addition of CNx in ACM2 (blue) slows down this transition 

significantly with a single discharge response not clearly observed until the seventh 

cycle. This contrast may be related to the volume change containment offered by the CNx 

layer. Thermal annealing in ACM3 (green) then appears to speed up the transition 

relative to ACM2 with a single discharge response observed by the fourth cycle. By the 

eighth cycle all samples have very close potentials of the charging plateau, whereas the 

discharge potentials still vary significantly.  
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Figure 4-5-4: Galvanic cycles of non-annealed Al-Al and non-annealed and annealed 

Al-Al-CNx anodes ACM1 (red), ACM2 (blue) and ACM3 (green) at a current 

density of 0.13 mA/cm
2
. Comparative bare half-hard GF Al anode GF1 (oxide 

removed) from Ch. 4.1 is also included (black)  

 

This is illustrated by Fig. 4-5-5 that shows the first (a) and last (b) galvanic cycles for all 

samples in this set. We can see that by the 8th cycle all samples show very similar shapes 

of the charging and discharging cycles and very close charging potentials; however, the 

discharging potentials and thus the plateau separation that characterizes the reversibility 

of the lithiation-delithiation processes are still quite different for the four samples. The 

lengths of the discharging plateaus that characterize the coulombic efficiency and 

reversibility of the lithiation-delithiation also remains different. This indicates that 

although one combined intermetallic phase is formed in all four layered samples as 

indicated by the appearance of the single discharge plateau, the properties of this 

combined phase remain quite different depending on the sample. Bare GF Al (GF1) has 

the lowest plateau separation and the least positive discharge potential thus indicating the 

highest reversibility. This is also confirmed by the coulombic efficiency data (see also 
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below). Non-annealed Al-Al-CNx (ACM2) sample showed the worst reversibility and the 

highest delithiation potential among all samples, both at the beginning and in the 8th 

cycle, although the difference becomes considerably smaller. Annealing of CNx layer 

(ACM3) produces major improvements in first few cycles as compared to non-annealed 

Al-Al-CNx sample (ACM2), but the difference largely disappeared by the 8th cycle.  

 

 

 

Figure 4-5-5: (a) First and (b) last galvanic cycles of Al-Al and non-annealed and 

annealed Al-Al-CNx anodes ACM1 (red), ACM2 (blue) and ACM3 (green) at a 

current density of 0.13 mA/cm
2
. Comparative bare half-hard GF Al anode GF1 

(oxide removed) from Ch. 4.1 is also included (black). Cycles in the right figure have 

been offset to overlap the curves on the same time scale.  

 

The double delithiation behaviour present early in the first set of the three coated samples 

produces a shorter combined discharge plateau length and thus the coulombic efficiency 

(CE) is lower relative to bare GF Al (GF1), with the greatest severity observed in non-

annealed Al-Al-CNx (ACM2) (Fig. 4-5-5 a). As the conditioning progresses to a single 

discharge plateau (Fig. 4-5-5 b), the efficiencies become much more comparable (Fig. 4-

5-6 a). The evolution of the coulombic efficiencies for all samples is further illustrated in 

Fig. 4-5-6 for the four current densities used. In the first set both discharge plateaus have 

been fitted together as one delithiation process for the efficiency calculation. One can see 

that significant differences exist only during first 8 cycles at the lowest current densities, 
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in the rest of the experiments the sample performance was very similar. However, one 

should note that non-annealed Al-Al-CNx sample (blue) continued to suffer from high 

resistivity causing early termination of its cycling at the highest current density (Fig. 4-5-

6 d).  

 

 

 

Figure 4-5-6: Coulombic efficiencies of non-annealed Al-Al and non-annealed and 

annealed Al-Al-CNx anodes ACM1 (red), ACM2 (blue) and ACM3 (green) at 

current densities of (a) 0.13 (b) 0.25 (c) 0.5 and (d) 1 mA/cm
2
. Comparative bare 

half-hard GF Al anode GF1 from Ch. 4.1 is included in black.  

 

 

Overall these results suggest that the while the structure and properties of the 

nanostructured anodes were very different in the first charge-discharge cycles, this 

difference becomes quite minor as the cycling progresses and a single composite 

intermetallic phase is gradually formed. When annealed, the presence of the CNx layer 
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appears to help the initial reversibility during the Al-Al conditioning (Fig. 4-5-6 a), but 

the effect rapidly disappears with cycling. As a result, we did not perform any further 

experiments on these types of anodes. Considering the fragile mechanical properties of 

the Al thin film, and its contribution towards the poor reversibility of Al-Al based anode 

systems, we would expect the resulting trends of coulombic efficiency and plateau 

separation degradation to be more severe for Al-Al relative to bare GF Al itself. Similarly 

we would expect Al-Al-CNx anodes to perform worse over time relative to Al-CNx 

anodes presented in Ch. 4.4. At the same time, using layered Al-Al anodes allowed us to 

determine the specific capacity and confirm that the main lithiation process is formation 

of LiAl with theoretical capacity of 993 mA·h/g.  

 

Al thin film anodes on Cu substrate 

 

Since in the above experiments one of the principal processes remained lithiation of the 

bulk Al substrate, further set of experiments was performed with thin Al layer deposited 

onto Cu substrate with or without CNx layers. Copper is known to be inert towards Li 

intercalation or intermetallic phase formation [8]. Shown in Fig. 4-5-7 is the set of 

galvanic cycles for non-annealed and annealed 25+75 nm Cu-Al-CNx anodes CM1 and 

CM2, as well as the non-annealed 75+25+75 nm and 25+75+50 nm Cu-CNx-Al-CNx 

anodes CM3 and CM4 . One can see that the cycles have quite complex structure that 

comprise different charging and discharging processes. Shown in Fig. 4-5-8 are the 

combined coulombic efficiencies of all the charge-discharge processes for the four 

copper-based anodes across the four current densities. One can see that all electrodes had 

quite low reversibility of the charging-discharging processes, with the overall coulombic 

efficiencies not exceeding 80% except for CM1 in the third set (Fig. 4-5-8 c). Overall, 

these results suggest that anode systems with nanostructures as the only source of Al have 

significantly poorer reversibility of lithiation-delithiation relative to anodes based on bulk 

Al. Additionally they do not appear to be able to sustain lithiation-delithiation at 

relatively high current densities as seen in the failures of the third and fourth sets (Fig. 4-

5-8 c-d). Even when the contributions of all lithiation-delithiation processes in the 

copper-based anodes are summed together, the total efficiencies are still poor. In 
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comparison even the analogous Al-Al-CNx anodes (ACM2, ACM3) that also had the Al 

thin film layer easily surpassed this value at higher current densities (Fig. 4-5-6 c-d). 

SEM images (see below 4.5.2) showed very rough and disordered structures at the 

surface of Cu-based anodes upon cycling. The most likely reason for this behaviour is 

poor mechanical stability and inability to withstand volume changes for thin Al films on 

foreign substrates. These facts indicate that the presence of bulk Al substrate is essential 

for the development of Al-based anodes for Li ion batteries.  

 

 

 

Figure 4-5-7: Galvanic cycles for non-annealed and annealed 75% N2 25+75 nm Cu-

Al-CNx anodes CM1 (black) and CM2 (red), non-annealed 75% N2 75+25+75 nm 

and 25+75+50 nm Cu-CNx-Al-CNx anodes CM3 (blue) and CM4 (green), at a 

current density of 0.13 mA/cm
2
. 

 



www.manaraa.com

227 

 

 

 

Figure 4-5-8: Coulombic efficiencies of non-annealed and annealed 25+75 nm Cu-

Al-CNx anodes CM1 (black) and CM2 (red), non-annealed 75+25+75 nm and 

25+75+50 nm Cu-CNx-Al-CNx anodes CM3 (blue) and CM4 (green) at current 

densities of (a) 0.13 (b) 0.25 (c) 0.5 and (d) 1 mA/cm
2
. All lithiation/delithiation 

processes have been summed together for calculation of the coulombic efficiency.  

 

4.5.2 SEM images  

 

Shown in Fig. 4-5-9 are SEM images of the uncycled areas of 3 multilayer samples 

ACM1-ACM3 prepared on Al substrates, as well as the reference bare GF Al (GF1) 

sample. The uncycled morphology is dominated by the etching pattern of the underlying 

substrate with higher magnification revealing the fine grain structure of the overlaying 

amorphous films. Figs. 4-5-10 - 4-5-12 show the cycled areas of the same samples at 

different magnifications after being subjected to the 4x8 experiments. One can see that 

images at the lowest magnification show quite similar and relatively uniform large-scale 
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morphology (Fig. 4-5-10). One can see that, as with bulk Al samples, cycling and 

especially cycling and annealing removes the CNx film from the surface (Fig. 4-5-10 c-

d). It is either incorporated in the growing LiAl phase, or is buried under this phase 

during its growth, or is partially peeled off due to the volume changes. In particular, one 

can see some preserved CNx in the non-annealed Al-Al-CNx sample (ACM2). Some 

leftover CNx are also seen in the annealed Al-Al-CNx (ACM3) sample but clearly it has 

very much reacted. 

 

 

 

Figure 4-5-9: SEM images of uncycled areas for (a) bare GF Al (oxide removed) 

(GF1), (b) non-annealed 25 nm Al-Al (ACM1), (c) non-annealed 75% N2 25+75 nm 

Al-Al-CNx (ACM2), (d) annealed 75% N2 25+75 nm Al-Al-CNx (ACM3). 

Magnifications of 10000x.  
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Figure 4-5-10: SEM images of cycled areas from 4x8 experiments for (a) bare GF Al 

(oxide removed) (GF1), (b) non-annealed 25 nm Al-Al (ACM1), (c) non-annealed 

75% N2 25+75 nm Al-Al-CNx (ACM2), (d) annealed 75% N2 25+75 nm Al-Al-CNx 

(ACM3). Magnifications of 1000x. Red circles in figures c-d indicate flat and porous 

sub-areas. 
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Figure 4-5-11: SEM images of cycled areas from 4x8 experiments for (a) bare GF Al 

(oxide removed) (GF1), (b) non-annealed 25 nm Al-Al (ACM1), (c) non-annealed 

75% N2 25+75 nm Al-Al-CNx (ACM2), (d) annealed 75% N2 25+75 nm Al-Al-CNx 

(ACM3). Magnifications of 10000x.  

 

 

 

 

 

 

 

 



www.manaraa.com

231 

 

 

Figure 4-5-12: SEM images of cycled areas from 4x8 experiments for (a) bare GF Al 

(oxide removed) (GF1), (b) non-annealed 25 nm Al-Al (ACM1), (c) non-annealed 

75% N2 25+75 nm Al-Al-CNx (ACM2), (d) annealed 75% N2 25+75 nm Al-Al-CNx 

(ACM3). Magnifications of 25000x. 

 

Fig. 4-5-11 shows the same samples but at higher magnification. Now we start to see the 

significant differences between the samples. The Al-Al sample (ACM1) is clearly 

rougher and more heterogeneous than the reference bare GF Al (GF1) sample but shows 

a similar morphology. At the same time, samples with CNx start to show a quite unique 

globular-porous morphology with clearly pronounced nanosize pores resembling a 

honeycomb. Annealing makes the morphology different, with both the pores and the 

globules being smaller.  

 

Shown in Fig. 4-5-12 are the same 4 samples but at the highest magnification. One can 

now clearly see the differences in morphology. The bulk GF Al sample (GF1) shows 
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relatively open heterogeneous structure which, however, does not have any nanopores. 

The sputtered Al-Al sample (ACM1) without CNx shows a similar but rougher 

morphology, with some hints of honeycomb nanopores in some areas of the sample. At 

the same time, both CNx coated Al-Al-CNx samples show a remarkable morphology that 

combines a globular pattern with very fine and regular honeycomb-like nanopores. The 

size of the globules is ca. 1 µm in non-annealed Al-Al-CNx sample (ACM2) and 200-400 

nm in the annealed one (ACM3). The size of the nanopores is also different: ca. 50-200 

nm in the non-annealed sample and ca. 10-50 nm in the annealed one. These difference 

should be related to structural and chemical changes that happen with the Al-Al-CNx 

electrode during annealing. For instance, annealed Al-Al-CNx sample showed a higher 

initial overvoltage of the LiAl formation in the CV (Fig. 4-5-1). This may result in 

smaller morphological features since the phase growth will be inhibited. The nanoporous 

structure does not form without CNx, which suggest that this inhibiting effect is essential. 

Also essential seems to be the availability of soft sputtered Al layer. However, in our 

later work, we succeeded in obtaining the honeycomb nanostructured anodes without 

sputtered Al (see Ch. 4.7).  

 

The occurrence of the honeycomb nanoporous morphology should be related to the 

effects of repeated lithiation-delithiation and the corresponding volume changes. As the 

electrode charges, new LiAl phase is formed, which has a higher volume than non-

lithiated Al. However, upon discharge, the volume should decrease again. In the right 

conditions, this volume decrease will produce regular voids that can be filled again 

during the next lithiation cycle without changes in the overall size of the electrode. An 

additional advantage of the nanoporous morphology is the formation of highly developed 

interface between the Al electrode and electrolyte, which should increase the available 

current densities and remove transport limitations. Therefore, such honeycomb 

nanostructure should withstand well the volume changes and improve the cycling ability 

and reversibility of the lithiation-delithiation processes at Al anodes, also at high current 

densities. However, in order to form the honeycomb structure itself, low current densities 

should be used (called conditioning in the other chapters).  
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Shown in Figs. 4-5-13 - 4-5-15 are SEM images of the cycled areas obtained after 4x8 

experiments for various samples prepared on the copper substrates. Specifically, the 

following samples were studied: (a) 75% N2 25+75 nm Cu-Al-CNx (CM1), (b) 75% N2 

25+75 nm annealed Cu-Al-CNx (CM2), (c) 75% N2 25+75+50 nm Cu-CNx-Al-CNx 

(CM4) (d) 75% N2 75+25+75 nm Cu-CNx-Al-CNx (CM3). Fig. 4-5-13 shows the sample 

morphology at the lowest magnification. One can see that the Cu-Al-CNx sample is 

relatively uniform showing a bit disordered intermetallic phase at this magnification. 

Annealing seems to passivate the sample and preserve most CNx film on the sample 

surface. The presence of underlying CNx layer underneath the sputtered Al seem to 

increase the sample heterogeneity. It looks as the sputtered Al was clearly redistributed 

during the cycling, with thinner Al and thicker underlying CNx layer (Fig. 4-5-13 d) 

facilitating the redistribution as compared to Fig. 4-5-13 c. In particular, the sputtered Al 

in Fig. 4-5-13 d is clearly clustered in few separate aggregates, with the areas between 

them showing CNx film on the top. In Fig. 4-5-13 c, there are relatively fewer areas 

blocked with CNx, with highly heterogeneous LiAl phase in between, which should have 

originated from lithiation of sputtered Al.  
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Figure 4-5-13: SEM images of cycled areas from 4x8 experiments for (a) non-

annealed 75% N2 25+75 nm Cu-Al-CNx (CM1), (b) annealed 75% N2 25+75 nm Cu-

Al-CNx (CM2), (c) non-annealed 75% N2 25+75+50 nm Cu-CNx-Al-CNx (CM4), (d) 

non-annealed 75% N2 75+25+75 nm Cu-CNx-Al-CNx (CM3). Magnifications of 

1000x. 
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Figure 4-5-14: SEM images of cycled areas for (a) non-annealed 75% N2 25+75 nm 

Cu-Al-CNx (CM1), (b) annealed 75% N2 25+75 nm Cu-Al-CNx (CM2), (c) non-

annealed 75% N2 25+75+50 nm Cu-CNx-Al-CNx (CM4), (d) non-annealed 75% N2 

75+25+75 nm Cu-CNx-Al-CNx (CM3). Magnifications of 10000x. 

 

 

This is again highlighted in images taken at higher magnifications (Figs. 4-5-14, 4-5-15). 

In particular, Fig. 4-5-15 shows high resolution images of both passive and 

heterogeneous areas on the sample surface. The heterogeneous structure is quite similar 

for the two Cu-CNx-Al-CNx samples with the underlying CNx layers (Fig. 4-5-15 c-d). 

They can be distantly related to the honeycomb structure obtained with samples on Al 

surface but with much larger voids and much higher degree of disorder. A somewhat 

similar but even more disordered structure is also seen for non-annealed Cu-Al-CNx 

sample (CM1) (Fig. 4-5-15 a). The degree of disorder is even higher for the annealed Cu-

Al-CNx sample (CM2), which did not even permit us to obtain a high resolution image 
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due to pronounced surface charging. Interestingly, the heterogeneous areas on both 

samples with underlying CNx layers (CM3, CM4) both showed signs of development of 

very fine honeycomb nanopores (Fig. 4-5-15 c-d), along with relatively intact underlying 

CNx in the passive areas (Fig. 4-5-15 e-f). This may mean that formation of nanoporous 

honeycomb structure starts with some kind of structural modification of CNx. Overall, as 

has been already noted, samples prepared on copper substrate featured very high 

heterogeneity and disorder and were not investigated further. 
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Figure 4-5-15: SEM images of cycled areas from 4x8 experiments for (a) non-

annealed 75% N2 25+75 nm Cu-Al-CNx (CM1), (c,e) non-annealed 75% N2 

25+75+50 nm Cu-CNx-Al-CNx (CM4) two areas, (d,f) non-annealed 75% N2 

75+25+75 nm Cu-CNx-Al-CNx (CM3) two areas. Magnifications of 25000x. 
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4.5.3 EDX Composition Charts  

 

Shown in Table 4-5-16 is the EDX composition data in atomic % of the uncycled, cycled 

porous and cycled flat areas of the non-annealed Al-Al and non-annealed and annealed 

Al-Al-CNx anodes ACM1, ACM2, ACM3 after being subjected to the 4x8 experiments. 

The predominance of a strong Al signal within the uncycled areas (a,c,f) indicates an 

unreactive anode with surface contamination by the electrolyte. Carbon and oxygen 

content should arise from a combination of trace propylene carbonate and residual 

surface oxide present after the electrode preparation before film deposition. The CNx 

films will contribute carbon as well and 5 to 15 percent nitrogen depending on total 

thickness. The very low oxygen content of a few percent is expected given the polished 

and etched preparation before film deposition. Trace phosphorus and fluorine content 

should arise from LiPF6 salt remaining after rinsing. The small amount of silicon detected 

in all samples likely originates from a combination of silicon carbide paper used for 

polishing, and as an impurity commonly found in Al 1100 alloys. Lithium content cannot 

be tracked due to the overlap of its low energy x-rays with the baseline peak close to 0 

eV.  

 

The cycled porous region of non-annealed Al-Al-CNx (ACM2) (d) shows significant 

carbon, oxygen and fluorine content as was observed for bare GF Al, MC Al, Dural and 

CNx-coated anodes in Ch. 4.1.3, 4.2.3, 4.3.3 and 4.4.3 respectively. This is again likely 

due to the presence of electrolyte within the cycled structure, as well as the products of 

solvent electroreduction and salt decomposition in the SEI layer [10]. Here the oxygen 

content is considerably higher, possibly due to the increased presence of both electrolyte 

and SEI layer within the honeycomb. The porous honeycombs of both non-annealed Al-

Al (ACM1) (b) and annealed Al-Al-CNx (ACM3) (g) strongly resemble the composition 

seen here in ACM2, with a complete absence of nitrogen content. Moving on to the 

cycled flat region of ACM2 (e) there is nitrogen content but the signal is fairly weak 

compared to such flat regions in Al-CNx anodes. Perhaps the CNx remnants in these 

multilayer samples are thinner resulting in the 7 kV column voltage mostly profiling the 

underlying alloy. A similar composition is observed for the twisted flat remnants in the 
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cycled flat area of the annealed Al-Al-CNx (ACM3) (h). These EDX results confirm our 

assessments from the SEM images and electrochemistry of these three Al-Al based 

samples. For Al-Al based anodes the modified porous morphology in the form of the 

disordered honeycomb should be due to conversion of Al thin film into the intermetallic 

alloy phase during lithiation-delithiation. The CNx film layer however rapidly cracks and 

remains in various flat or twisted pieces on top of the alloy. Additionally there is no 

improvement in CNx film stability offered by thermal annealing of Al-Al-CNx as in the 

single layered Al-CNx anodes (AC1, AC2) in Ch. 4.4.2 (Fig. 4-4-24). 
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Table 4-5-16: EDX composition chart of uncycled, cycled porous and cycled flat 

areas for non-annealed 25 nm Al-Al (ACM1) and non-annealed (ACM2) and 

annealed (ACM3) 75% N2 25+75 nm Al-Al-CNx anodes after being subjected to 4x8 

experiments. Spectra data was collected at a column voltage of 7 kV for 50 seconds 

at 1000x magnification.  

 

 Atomic %  

Sample Area C  N  O  F  Al  Si  P  

ACM1  (a)Uncycled  2.74   3.99  0.16  93.01  0.02  0.08  

 (b)Porous  5.59   46.42  25.82  21.01  0.16  1.00  

ACM2 (c)Uncycled  28.18  9.52  3.47  0.24  58.44  0.09  0.06  

 (d)Porous  7.41   44.20  20.00  27.63  0.14  0.63  

 (e)Flat  14.59  2.63  27.28  44.70  10.17  0.16  0.47  

ACM3  (f)Uncycled  28.90  9.11  3.29  0.32  58.25  0.11  0.02  

 (g)Porous  5.87   45.92  25.34  21.72  0.09  1.06  

 (h)Flat  16.19  4.29  37.06  24.78  16.70  0.20  0.77  

 

 

Shown in Table 4-5-17 is EDX composition data in atomic % for the four copper-based 

anodes in the uncycled areas as well as the cycled porous and flat sub-areas. The 

predominance of Cu signal here within the uncycled areas again indicates an unreactive 

anode with surface contamination by the electrolyte (a,d,g,j).  
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Table 4-5-17: EDX composition chart of uncycled, cycled porous and cycled flat 

areas for non-annealed (CM1) and annealed (CM2) 25+75 nm Cu-Al-CNx anodes, 

non-annealed 75+25+75 nm (CM3) and 25+75+50 nm (CM4) Cu-CNx-Al-CNx 

anodes after being subjected to 4x8 experiments. Spectra data was collected at a 

column voltage of 7 kV for 50 seconds at 1000x magnification.  

 

 Atomic %  

Sample Area C  N  O  F  Al  Si  P  Cu  

CM1  (a)Uncycled  33.37  11.80  3.23   9.28  1.56  0.10  40.67  

 (b)Porous  27.03  0.40  66.55  4.71  0.58  0.16  0.57   

 (c)Flat  31.50  3.64  49.18  2.87  4.76  0.29  0.50  7.26  

CM2  (d)Uncycled  32.43  10.27  3.03  0.11  12.62  1.51   40.03  

 (e)Porous  19.54   60.36  17.31  1.88  0.08  0.72  0.10  

 (f)Flat  26.38  3.83  32.71  9.40  3.61  1.80  0.42  21.85  

CM3  (g)Uncycled  41.49  17.02  3.47  0.09  7.85  0.88  0.01  29.29  

 (h)Porous  21.19  0.37  55.81  19.47  2.05  0.07  0.59  0.44  

 (i)Flat  26.41  7.47  31.64  16.41  5.55  0.26  0.14  12.13  

CM4  (j)Uncycled  26.30  9.86  2.81  0.79  26.80  0.54   32.90  

 (k)Porous  20.34   58.08  20.43  0.14  0.11  0.69  0.21  

 (l)Flat  12.80   10.39  4.09  0.51  0.04  0.24  71.93  

 

 

As expected the higher ratio of CNx to Al content in 75+25+75 nm Cu-CNx-Al-CNx 

(CM3) relative to non-annealed (CM1) and annealed (CM2) Cu-Al-CNx produces higher 

C:Al and N:Al ratios within the uncycled area (g), with these trends reversed in the 
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uncycled area of 25+75+50 nm Cu-CNx-Al-CNx (CM4) prepared with higher thickness 

of Al film (j). For the composition of the cycled areas we first consider the non-annealed 

(CM1) and annealed (CM2) Cu-Al-CNx anodes. From the SEM images the porous 

regions would suggest the existence of intermetallic alloy due to strong C, O and F 

signals (b,e). However Al content is only detected with a few percent here which is far 

less than what has been observed in any previous porous morphologies. This may be 

explained if we assume that we have a very thick and very disordered intermetallic 

structure filled with components of electrolyte and products of their reactions. If the 

intermetallic alloy in these regions degraded and peeled off from the copper substrate at 

higher cycling currents we would expect to see a strong Cu signal which is absent. For 

both CM1 and CM2 samples the composition of cycled flatter regions shows some 

resemblance to the uncycled area, but with weaker N, Al and Cu signals (c,f). Perhaps 

this is due to partial reactivity as seen in the significantly higher oxygen content here. For 

both Cu-CNx-Al-CNx samples the cycled porous regions again shows very low Al and N 

signals (h,k). The composition of the flat region of CM3 (i) suggests partial reactivity 

similar to the flat regions of CM1 and CM2. However the flat region of CM4 with a 

thicker Al layer has both negligible Al and N content, which is very unusual (L). The 

very strong Cu signal here suggests that we have here a very thin film on essentially bare 

Cu substrate. We would expect the thicker Al layer present in CM4 to manifest itself as 

an appreciable Al signal somewhere in the cycled area.  

 

Overall the electrochemistry and surface analysis results in Ch. 4.5 suggest that 

nanostructured anodes with amorphous Al thin films grown on a Cu substrate are 

considerably more fragile than those based on crystalline bulk Al. At higher cycling 

currents these anodes rapidly degrade both in efficiency as well as the mechanical 

stability of any intermetallic phases present. The inclusion of single or multiple CNx 

layers underneath and on top the amorphous Al does not appear to improve this 

behaviour. The poor performance of Al nanostructure anodes relative to those of Si and 

SnO2 is a recurring theme in the literature and will be further discussed in Ch. 5. 
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4.6 TOF-SIMS Secondary Ion Depth Profiles and Surface 

Profilometry 

 

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) dual-beam depth profiling 

was performed on several anode samples from Ch. 4.1, 4.2, 4.4 and 4.5 after completion 

of their 4x8 experiments and removal from the liquid half-cell setup. This specialized 

analytical technique was described previously in Ch. 2.7. Depth profiling of anode 

samples was performed in the negative ion mode for both uncycled and cycled areas. Bi3
+ 

was used as the analysis beam and Cs+ as the sputter beam. The slope and roughness of 

the depth profiles described in this chapter will vary due to multiple factors including 

SIMS instrumental parameters, heterogeneity of solid-electrolyte interphase (SEI), 

surface roughness and ion-induced surface damage [2]. Considering all these effects we 

do not extend our analysis to comparing the relative concentrations of different species 

on the basis of ion signal. Therefore the work in this chapter is strictly a qualitative 

treatment and discussion of the depth profiling of these anodic materials after their 

respective 4x8 liquid half-cell experiments. The secondary ions shown here should be 

representative of their respective structural components in both cycled and uncycled areas 

of the samples. As a complimentary technique to TOF-SIMS depth profiling we also 

performed surface profilometry on these anode samples to determine the step height and 

roughness of the cycled areas relative to uncycled areas. 

 

4.6.1 Bare half-hard Goodfellow Al (GF Al) anode GF1 

(oxide removed) from Ch. 4.1 

 

TOF-SIMS Secondary Ion Depth Profiles of GF1 

 

Shown in Fig. 4-6-1 a-d and Fig. 4-6-2 a-d are the secondary ion depth profiles for bare 

half-hard Goodfellow Al (GF Al) anode GF1 (oxide removed) in both uncycled and 

cycled areas respectively after the 4x8 experiment. For all depth profiles the vertical axis 



www.manaraa.com

245 

 

is the raw ion intensity in counts with the horizontal axis as the total time in seconds that 

the Cs+ sputter beam has been active. Intensities on the vertical axis are shown in 

logarithmic scale to magnify low intensities of some characteristic secondary ions. Depth 

profiling was performed on the uncycled area until the intensity of characteristic 

electrolyte species dropped to negligible levels. For GF1 this corresponds to 200 sec of 

sputter time. For depth profiling of the cycled area we were not certain of the thickness of 

the intermetallic alloy at the time. Therefore we stopped SIMS profiling of the cycled 

area after 700 sec, once most ion species plateaued in intensity. After SIMS analysis we 

did surface profilometry to reveal that the average step height of the cycled area was 

several micrometers thick. Based on our SIMS instrumental parameters in this work such 

a depth would have required many hours of profiling, and therefore almost certainly 

would have not guaranteed a stable primary ion current that entire time. Clearly a much 

higher sputter time (5-10 sec) per scan would be required to depth profile the entire 

thickness of the intermetallic alloy. Therefore, our SIMS analysis of the cycled areas 

refers to the portions of the electrode close to its outer surface. Al oxide and bulk Al 

regions were defined in the uncycled area of Fig. 4-6-1 a-d with vertical dashed lines. 

These regions were approximated by requiring at least 75% of the maximum intensity of 

ions characteristic of that layer [3]. For example this would involve AlO- and Al2
- ions as 

species characteristic of Al oxide and Al metal layers respectively. The use of this 

criterion is fairly simple for the uncycled area of this sample. However the rough porous 

morphology of cycled electrodes results in significantly more complex secondary ion 

behaviour. This makes it considerably more difficult to assign discrete layers. Therefore 

we simply discuss what may be the predominant components corresponding to regions in 

the cycled profiles. 

 

First we consider the depth profiles of the uncycled area in Fig. 4-6-1 a-d. As mentioned 

previously the term "uncycled" here denotes the area outside the gasket, which should not 

be exposed to electrolyte. A maximum  of Al oxide species is observed in the first 15 sec 

of sputtering time (Fig. 4-6-1 b), indicating some partial re-growth of the surface oxide 

after it has been etched away during substrate preparation. This behaviour may also be 

seen by tracking the 18O- isotope ion (Fig. 4-6-1 a). Care was taken to remove the surface 
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oxide through a combination of polishing and then etching in alkaline KOH solution. 

However there was brief exposure of sample to ambient atmosphere during the transfer 

and preparation steps. Bulk Al below the oxide layer is characterized with Al2
- and Al3

- 

ions, similar to Si2
- ions used in depth profiling of Si anodes [3]. In comparison the 

monoatomic Al- secondary ion was only very weakly detected, and therefore ignored for 

the purpose of this analysis. These bulk aluminium cluster species rapidly rise in intensity 

and plateau after approximately 50 sec. We detected secondary ion species characteristic 

of the LiPF6 salt as Li-, LiO-, F-, PO2
- and PO3

- (Fig. 4-6-1 a,d) . The F- ion in particular 

shows an extremely high intensity in the uncycled area, likely due to its very high 

negative ionization yield under Cs+ sputtering [1]. The CO2H
- and C3H3O2

- secondary ion 

species (Fig. 4-6-1 d) should arise from fragmentation of propylene carbonate solvent as 

well as the products of its electroreduction in SEI formation [2]. Other CO containing 

secondary ions could not be definitively identified in the spectra. These various 

electrolyte species were detected with high intensity initially but show rapid decline once 

the bulk Al region is reached. Therefore the electrolyte present in this uncycled area 

should exist mostly as trace surface contamination on top of the unreacted Al electrode. 

This profiling behaviour shows that the gasket is working properly to isolate this outside 

area as a reference "uncycled" area in our half-cell experiments. The residual electrolyte 

should have been introduced into the uncycled area when rinsing the sample after its 

removal from the cell. 
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Figure 4-6-1: TOF-SIMS negative secondary ion depth profiles of uncycled area of 

bare half-hard Goodfellow Al anode GF1 (oxide removed) subjected to 4x8 

experiment from Ch. 4.1. Vertical axis is raw ion intensity counts. Horizontal axis is 

total active time in seconds for Cs
+
 sputter beam. Vertical dashed line denotes the 

approximated boundary between the surface oxide region and the bulk Al. 

 

 

We detected several  low mass carbon-containing species C- to C4
- (Fig. 4-6-1 c). C1

- and 

C2
- are typically attributed to adventitious (atmospheric) carbon contamination in the 

TOF-SIMS analysis chamber. They are observed even in inorganic systems such as 

sputter cleaned Si single crystal [4]. The faster intensity drop in the bulk Al region of C3
- 

and C4
- vs. C1

- and C2
- may suggest that the former pair are also produced by 

fragmentation of the propylene carbonate solvent. Commercial Al 1100 alloy is typically 

99% Al with the most abundant impurities being Fe and Si. Negative Fe containing 

species such as FeO- and FeO2
- were not definitively identified in the spectra. Their 
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absence may simply be due to the low abundance of this impurity relative to the bulk 

aluminium present. However silicon is detected as Si- with a maxima at 20 sec and 

intensity that persists into the bulk Al region (Fig. 4-6-1 a). The near overlap of this Si- 

maxima with Al oxide species may be due to polishing with SiC paper for removal of 

surface oxide during substrate preparation.  

 

We now turn attention to the cycled area of GF1 in Fig. 4-6-2 a-d. As mentioned 

previously in Ch. 2.3.3 the XRD analysis of cycled Al anodes shows LixAly crystalline 

alloy phases [5-9]. Experimentally this typically only contains the lowest order alloy 

LiAl. Here in TOF-SIMS depth profiling of our Al anode systems we did not detect 

compound LixAly
- secondary ion species. However we did simultaneously detect Li- and 

Aly
- species immediately in profiling the sample surface. Furthermore, these ion species 

persist  at high intensities throughout the entire profiling depth of the cycled area. The 

distribution of these species was relatively uniform throughout the film, except for slight 

decrease at the surface. The question still remains why do we not see emission of 

compound intermetallic secondary ions. The alloy may possibly be fragmented into these 

simple species during the Cs+ sputtering event. Alternatively perhaps there are intact 

intermetallic species emitted from the surface that are then fragmented before they reach 

the detector.  We can only state that the behaviour is likely due to some combination of 

poor sputtering and/or ionization yield of these species. As shown previously the SEM 

images of GF1 show homogenous porous morphology indicating full reactivity across the 

entire cycled area (Fig. 4-1-13 c). Therefore both the entire sputter and analysis areas 

here in TOF-SIMS profiling contain this porous morphology, because these areas are 

considerably larger than the area observed in SEM images. As a result there must be 

intermetallic composition present throughout the entire TOF-SIMS profiling depth of 

each cycled area. This is again consistent with the redox behaviour observed in the CVs 

(Fig. 4-1-3), and the long flat plateaus in the galvanic cycles (Fig. 4-1-4).  

 

While the uncycled area shows less than 1000 counts of electrolyte species, the cycled 

area of this GF1 sample contains up to 10000 counts (Fig. 4-6-2 a,d). Additionally these 

secondary ions persist throughout the entire profiling depth of the cycled area, considered 
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as intermetallic LiAl alloy. Therefore instead of simple surface contamination in the 

uncycled region, the electrolyte here is due to the presence of solid-electrolyte interphase 

(SEI) layer. The formation of the SEI layer was demonstrated previously in the partial 

cathodic CV scans in Fig. 4-1-2. The SEI contains various organic and inorganic 

components (2). Organic components are generally known to result from partial 

electroreduction of the solvent, which in our work was propylene carbonate. 

 

 

 

Figure 4-6-2: TOF-SIMS negative secondary ion depth profiles of cycled area for 

bare half-hard Goodfellow Al anode GF1 (oxide removed) subjected to 4x8 

experiment from Ch. 4.1. Vertical axis is raw ion intensity counts. Horizontal axis is 

total active time in seconds for Cs
+
 sputter beam. 

 

This process will be assisted by lithium ions due to their presence at the electrode surface 

in the electric double layer. Electroreduction will therefore generate various lithium 

carbonate species as well as alkoxy and carboxyl functionalities in the SEI. The 
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formation of inorganic products will be due to thermally-driven decomposition of the 

LiPF6 salt, which will be accelerated if there is trace moisture content present in the 

electrolyte and/or solvent [2]. This process will generate various Li containing species 

such as LiF and Li oxides. The organic and inorganic components of SEI formation were 

monitored through various secondary ions, similar to previous TOF-SIMS studies 

performed on silicon nanowire anodes [2-3]. Organic carbonate products were tracked as 

CO2H
- and C3H3O2

-, and inorganic products as Li-, LiO-, F-, PO2
- and PO3

-. In our 

profiling of the GF1 anode we were unable to conclusively identify other CO containing 

ions in the spectra. Therefore we take those ions to approximate both intact solvent and 

the products of its electroreduction in the SEI. Similarly for inorganic products of SEI we 

were unable to identify LiF-, PF6
- or higher order species like LiF2

-. However lithium 

oxide species still appeared to be present in the cycled area in the form of LiO-. In the 

case of LiFx
- ions these species may preferentially be fragmented here into Li- and F- due 

to a difference in SIMS instrumental parameters. Similarly to Li-, we see persistent Si- 

intensity throughout the entire profiling depth of the alloy (Fig. 4-6-2 a). This behaviour 

suggests that the Si impurity in the 1100 Al metal may be chemically incorporated into 

the porous structure and therefore electroactive towards lithiation/delithiation [10]. 

 

Considering the persistent high intensities of F-, PO2
-, PO3

-, CO2H
- and C3H3O2

- ions 

throughout the sample over the whole profiling depth (Fig. 4-6-2), these species should 

be characteristic of SEI formation and composition for cycling of Al anodes in LiPF6 and 

propylene carbonate. Based on this assumption, the LiAl alloy framework observed 

should occur simultaneously with the components of the  SEI layer. This strongly suggest 

high porosity of the LiAl intermetallic phase formed during the cycling, with the SEI 

formed at the internal walls of the nanopores. Most of the SEI species appear more 

concentrated within the first 120 sec where Al and Li content is still increasing. This 

suggests that the intermetallic structure is more open towards the surface of the anode. 

However, the porosity persists throughout all the profiled depth indicating formation of 

highly developed nanoporous structure as a result of cycling. Nothing like that was 

observed in non-cycled areas.  
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Looking at Fig. 4-6-2 b we see persistent high AlOx content throughout the profiling 

depth in this cycled area, with higher intensities apparent in the intermetallic-rich region 

after 120 sec. These AlOx
- profiles also roughly follow the behaviour of the Li- and Aly

- 

ions. Unlike the uncycled area profiles (Fig. 4-6-1 b) there is an absence of initial 

maxima of these oxide species. This absence suggests that the Al oxide may have been 

reduced during the lithiation (charging) steps of the CV and galvanic cycles for GF1. As 

previously mentioned this is unlikely for the CV scans (Fig. 4-1-3) due to the standard 

potential of 0.14V vs. Li+/Li for this process [5]. However for galvanic cycles  the highest 

current density of 1 mA/cm2 did result in lithiation occurring below 0V vs. Li+/Li (Fig. 4-

1-4). We instead offer two alternative explanations for the persistent high oxygen content 

observed throughout the TOF-SIMS profiling depth. Firstly the uncycled area of GF1 

(Fig. 4-6-1 b) only showed a brief initial maxima for AlOx
- intensity, before Aly

- sharply 

rises and dominates in the bulk Al region. Therefore the AlOx
- species throughout the 

cycled area should not be formed from oxygen present in the initial residual oxide layer. 

Additionally, electrochemical preparation of the cells was performed in a glovebox with 

< 1 ppm O2 and H2O content. Therefore the source of oxygen should primarily be from 

electroreduction of the propylene carbonate solvent (mentioned previously) [2]. There is 

clearly significant Al content present from the intermetallic alloy as seen in the profiles 

Al2
- and Al3

-. As a result there may be recombination of fragments during the Cs+ 

sputtering event, to give high AlOx
- intensity through the profiled alloy depth. Such 

behaviour has been observed in SiO2
- and LiO- ions for depth profiling of cycled Si 

anodes [2-3]. Secondly, Al anode systems may suffer a parasitic loss of efficiency due to 

irreversible lithiation of the surface oxide into a super-hard Li-O-Al layer [6]. This 

process occurs first before lithiation of the Al core, which was described previously in the 

onset of lithiation in the CVs (Fig. 4-1-2). The resulting Li-O-Al layer surrounds the 

underlying LiAl intermetallic phases and opposes the volume changes of lithiation-

delithiation. Our TOF-SIMS and SEM results here clearly show a highly porous 

intermetallic alloy structure that is several micrometers thick. If this structure contains a 

lithiated oxide layer we should therefore detect persistent intensities of AlOx
- ions. 
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Surface Profilometry of GF1 

 

After TOF-SIMS depth profiling we performed surface profilometry on this sample (Fig. 

4-6-3). The surface profile corresponds to a line scan of the stylus from the gasket area to 

the cycled area, and across to the opposite gasket area for a total distance of 7 mm. The 

surface profile shows an average step height of 5 um for this cycled area, which is 

defined as the difference in the average height of region A2 compared to A1. As expected 

the profile also shows significant roughness (height variation) which is consistent with 

the highly porous morphology observed in SEM imaging (Fig. 4-1-13 c,e).  

 

 

Figure 4-6-3: Surface profile of bare half-hard Goodfellow Al anode GF1 (oxide 

removed) subjected to 4x8 experiment from Ch. 4.1. Line scan is from gasket area to 

cycled area to gasket area. Step height is average difference of A1 and A2 areas. 
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Therefore, to conclude, our TOF SIMS studies of half-hard GF Al anode after a 4x8 

experiment suggest the formation of thick Li-containing Al phase with relatively uniform 

distribution of Li and Al species over the profiling depth. SEI was found to be present 

throughout the whole profiling depth, which indicated formation of highly porous 

structure. The average thickness of the Li-containing phase was much greater than the 

profiled depth and was equal to ca. 5 µm.   

 

4.6.2 Bare soft McMaster-Carr Al (MC Al) anode MC1 (oxide 

removed) from Ch. 4.2 

 

TOF-SIMS Secondary Ion Depth Profiles of MC1 

 

Shown in Fig. 4-6-4 a-d and Fig. 4-6-5 a-d are the secondary ion depth profiles for soft 

McMaster-Carr Al (MC Al) anode MC1 (oxide removed) in both uncycled and cycled 

areas respectively after the 4x8 experiment. For all depth profiles the vertical axis is the 

raw ion intensity in counts with the horizontal axis as the total time in seconds that the 

Cs+ sputter beam has been active. Intensities on the vertical axis are shown in logarithmic 

scale to magnify low intensities of some characteristic secondary ions. Depth profiling 

was performed on the uncycled area until the intensity of characteristic electrolyte species 

dropped to negligible levels. For MC1 this corresponds to 200 sec of sputter time. For 

depth profiling of the cycled area we were not certain of the thickness of the intermetallic 

alloy at the time. Similarly to GF1, we stopped SIMS profiling of the cycled area after 

700 sec, once most ion species plateaued in intensity. This was not enough to profile the 

whole film thickness as revealed by surface profilometry. Al oxide and bulk Al regions 

were defined in Fig. 4-6-4 a-d with vertical dashed lines. These regions were 

approximated by requiring at least 75% of the maximum intensity of ions characteristic 

of that layer [3]. For example this would involve AlO- and Al2
- ions as species 

characteristic of Al oxide and Al metal layers respectively. The use of this criterion is 

fairly simple for the uncycled area of this sample. However the rough porous morphology 

of cycled electrodes results in significantly more complex secondary ion behaviour. 
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Therefore we simply discuss what may be the predominant components corresponding to 

regions in the cycled profiles. 

 

 

 

Figure 4-6-4: TOF-SIMS negative secondary ion depth profiles of uncycled area for 

bare soft McMaster-Carr (MC Al) anode MC1 (oxide removed) after being 

subjected to a 4x8 experiment from Ch. 4.2. Vertical axis is raw ion intensity counts. 

Horizontal axis is total active time in seconds for Cs
+
 sputter beam. Vertical dashed 

line denotes the approximated boundary between the surface oxide region and the 

bulk Al. 

 

 

First we consider the depth profiles of the uncycled area in Fig. 4-6-4 a-d. Overall the 

SIMS depth profiles in the uncycled area are very similar to those described for the bare 

GF Al anode GF1 in the previous section (Fig. 4-6-1). As mentioned previously the term 

"uncycled" here denotes the area outside the gasket, which should not be exposed to 

electrolyte. A maxima of Al oxide species is observed in the first 15 sec of sputtering 
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time (Fig. 4-6-4 b), indicating some partial re-growth of the surface oxide after substrate 

preparation. Bulk Al below the oxide layer is characterized with Al2
- and Al3

- ions, 

similar to Si2
- ions used in depth profiling of Si anodes [2-3]. In comparison the 

monoatomic Al- secondary ion was only very weakly detected, and therefore ignored for 

the purpose of this analysis. These bulk aluminium cluster species rapidly rise in intensity 

and plateau after approximately 50 sec. We detected secondary ion species characteristic 

of the LiPF6 salt as Li-, LiO-, F-, PO2
- and PO3

- (Fig. 4-6-4) . The F- ion again shows an 

extremely high intensity in the uncycled area, likely due to its very high negative 

ionization yield under Cs+ sputtering [1]. 

 

 

 

Figure 4-6-5: TOF-SIMS negative secondary ion depth profiles of cycled area for 

bare soft McMaster-Carr (MC Al) anode MC1 (oxide removed) after being 

subjected to a 4x8 experiment from Ch. 4.2. Vertical axis is raw ion intensity counts. 

Horizontal axis is total active time in seconds for Cs
+
 sputter beam. 
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The CO2H
- and C3H3O2

- secondary ion species (Fig. 4-6-4 d) should arise from 

fragmentation of propylene carbonate solvent as well as the products of its 

electroreduction in SEI formation [2]. Other CO containing secondary ions could not be 

definitively identified in the spectra. These various electrolyte species were detected with 

high intensity initially but show rapid decline once the bulk Al region is reached. 

Therefore the electrolyte present in this uncycled area should exist mostly as trace surface 

contamination on top of the unreacted Al electrode. We detected several  low mass 

carbon-containing species e.g. C- to C4
-, which should arise from a combination of 

adventitious (atmospheric) carbon contamination in the TOF-SIMS chamber as well as 

fragmentation of the propylene carbonate solvent (Fig. 4-6-4 d). Like in GF Al we 

detected Si- here with a maxima at 20 sec and intensity that persists into the bulk Al 

region (4-6-4 a). This species arises from a combination of Si impurities in the MC Al 

material as well as due to polishing with SiC paper for removal of surface oxide during 

substrate preparation. 

 

We now turn attention to the cycled area of MC1 in Fig. 4-6-5 a-d and its similarities to 

the cycled depth profiles of the GF Al anode GF1 in the previous section (Fig. 4-6-2). 

Like in GF Al we did not detect compound intermetallic LixAly
- secondary ion species 

here in MC Al, but instead high concomitant Li- and Aly
- intensities throughout the entire 

profiling depth of the cycled area. Together with the fairly homogenous porous 

morphology observed across the entire cycled area of MC1 (Fig. 4-2-12) there should be 

intermetallic composition present throughout the TOF-SIMS profiling depth here. This is 

consistent with the redox behaviour of MC Al observed in the CVs (Fig. 4-2-2) and the 

long flat plateaus in the galvanic cycles (Fig. 4-2-3) being similar to GF Al.  

 

While the distribution of Li and Al containing species in cycled MC Al was fairly similar 

to that observed for cycled GF Al, one can see that there was a considerable gradient in 

Li content up to sputtering time of ca. 400 sec. Such behaviour was not observed for GF 

Al (Fig. 4-6-2). This is consistent with greater heterogeneity of the intermetallic structure 

formed on soft MC Al noted in Ch. 4.2.  
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Again, the cycled area of MC1 (4-6-5 a,d) indicated the presence of the electrolyte 

components that could not be attributed to surface contamination. The organic 

components of the SEI are tracked with CO2H
- and C3H3O2

- species. The inorganic 

components of the SEI are tracked with Li-, LiO-, F-, PO2
- and PO3

- species. As in GF Al 

these secondary ions persist throughout the entire profiling depth of the cycled area, 

suggesting the formation of highly porous structure with SEI formed at the internal walls 

of the nanopores throughout the thickness of the intermetallic LiAl alloy. However, 

unlike GF Al, the concentrations of the electrolyte species seem to increase with the 

profiling depth. This again indicate the formation of highly heterogeneous structure with 

possible delamination and cracking of the portions of the active intermetallic phase. This 

would allow more electrolyte to penetrate inside the LiAl nanostructure.  

 

Looking at Fig. 4-6-5 b there is persistent high AlOx content throughout the profiling 

depth in this cycled area, with higher intensities apparent later in the profiles. These 

AlOx
- profiles also roughly follow the behaviour of the Li- and Aly

- ions. This behaviour 

is similar to what was observed for GF Al. As for GF Al, we offer similar explanations 

here for MC Al. Firstly the residual surface oxide may have been reduced during the 

charging (lithiation) steps occurring below 0V vs. Li+/Li at the highest current density of 

1 mA/cm2 in the 4x8 galvanic cycles. Secondly there may be recombination of Al-

containing species from the intermetallic alloy with O-containing species from 

electroreduction of the propylene carbonate solvent in the SEI [2]. Finally there is the 

possibility of the residual surface oxide being lithiated irreversibly into a super-hard Li-

O-Al layer that surrounds the underlying porous intermetallic structure [6]. 

 

Surface Profilometry of sample MC1 

 

After TOF-SIMS depth profiling we performed surface profilometry on this sample (Fig. 

4-6-6). The surface profile corresponds to a line scan of the stylus from the gasket area to 

the cycled area, and across to the opposite gasket area for a total distance of 7 mm. The 

surface profile shows an average step height of 3.4 um for this cycled area, which is 

defined as the difference in the average height of region A2 compared to A1. This step 
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height is considerably smaller than was observed for bare GF Al (GF1) under identical 

(Fig. 4-6-3). The profile of MC1 still shows significant roughness (height variation) 

which is consistent with the highly porous morphology observed in SEM imaging (Fig. 

4-2-12).  

 

 

Figure 4-6-6: Surface Profile for bare soft McMaster-Carr (MC Al) anode MC1 

(oxide removed) after being subjected to a 4x8 experiment from Ch. 4.2. Line scan is 

from gasket area to cycled area to gasket area. Step height is average difference of 

A1 and A2 areas. 

 

To conclude, our TOF SIMS studies of soft MC Al anode after a 4x8 experiment suggest 

the formation of thick Li-containing Al phase, similarly to what was observed for GF Al. 

However, the distribution of the Li and Al species as well as the components of SEI over 

the profiling depth suggests that the nanostructure formed on the surface of MC Al is 

much more heterogeneous as compared to the one found on GF Al, with more cracks and 

voids and possible delamination allowing the penetration of the electrolyte components 
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deep inside he intermetallic phase. This is consistent with SEM results reported in Ch. 

4.2.  

 

4.6.3 Non-annealed (AC1) and Annealed (AC2) 75% N2 75 

nm Al-CNx anodes from Ch. 4.4 

 

TOF-SIMS Secondary Ion Depth Profiles of AC1 and AC2 

 

Shown in Fig. 4-6-7 a-d to Fig. 4-6-10 a-d are the secondary ion depth profiles for AC1 

(non-annealed Al-CNx) and AC2 (annealed Al-CNx) in both uncycled and cycled areas 

after their 4x8 experiments. For all depth profiles the vertical axis is the raw ion intensity 

in counts with the horizontal axis as the total time in seconds that the Cs+ sputter beam 

has been active. Intensities on the vertical axis are shown in logarithmic scale to magnify 

low intensities of some characteristic secondary ions. Depth profiling was performed on 

the uncycled area of these Al-CNx samples until the bulk Al region was reached. For 

both samples this corresponds to 300 sec of sputter time. 

 

For depth profiling of the cycled areas we were again not certain of the thickness of the 

intermetallic alloy at the time. Therefore we stopped SIMS profiling of the cycled areas 

once most ion species plateaued in intensity. For AC1 (non-annealed Al-CNx) and AC2 

(annealed Al-CNx) this corresponds to 700 sec and 500 sec respectively. As before, 

various layers at the sample surface, such as Al oxide, bulk Al, CNx and interfacial layers 

were defined in Fig. 4-6-7 and Fig. 4-6-8 with vertical dashed lines. These regions were 

approximated by requiring at least 75% of the maximum intensity of ions characteristic 

of that layer [3]. For example this would involve AlO- and Al2
- ions as species 

characteristic of Al oxide and Al metal layers respectively. No such assignment was 

performed, as before, in more complex cycled areas. 
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Figure 4-6-7: TOF-SIMS negative secondary ion depth profiles of uncycled area for 

non-annealed 75% N2 Al-CNx anode AC1 after being subjected to a 4x8 experiment 

from Ch. 4.4. Vertical axis is raw ion intensity counts. Horizontal axis is total active 

time in seconds for Cs
+
 sputter beam. Vertical dashed lines denote the approximated 

regions of CNx film, interfacial layer and bulk Al.  
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Figure 4-6-8: TOF-SIMS negative secondary ion depth profiles of uncycled area for 

annealed 75% N2 Al-CNx anode AC2 after being subjected to a 4x8 experiment 

from Ch. 4.4. Vertical axis is raw ion intensity counts. Horizontal axis is total active 

time in seconds for Cs
+
 sputter beam. Vertical dashed lines denote the approximated 

regions of CNx film, interfacial layer and bulk Al.  
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Figure 4-6-9: TOF-SIMS negative secondary ion depth profiles of cycled area for 

non-annealed 75% N2 Al-CNx anode AC1 after being subjected to a 4x8 experiment 

from Ch. 4.4. Vertical axis is raw ion intensity counts. Horizontal axis is total active 

time in seconds for Cs
+
 sputter beam. Vertical dashed lines denote the approximated 

regions of SEI-rich layer, CNx-rich layer and Intermetallic-rich layer 
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Figure 4-6-10: TOF-SIMS negative secondary ion depth profiles of cycled area for 

annealed 75% N2 Al-CNx anode AC2 after being subjected to a 4x8 experiment 

from Ch. 4.4. Vertical axis is raw ion intensity counts. Horizontal axis is total active 

time in seconds for Cs
+
 sputter beam.  
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First we consider the depth profile of the uncycled area of AC1 (non-annealed Al-CNx) 

in Fig. 4-6-7 a-f. As mentioned previously the term "uncycled" here denotes the area 

outside the gasket, which should not be exposed to electrolyte. Al-CNx is a layered 

structure with a distinct film-metal interfacial layer. Based on our labeling criterion for 

AC1 the CNx layer is approximately 0-130 sec, interfacial layer 130-190 sec and bulk Al 

190+ sec. As in the profiling of bare GF Al (GF1) and MC Al (MC1) samples in the 

previous sections there are electrolyte species detected here with high intensity that 

rapidly drop after the first 25 sec. These electrolyte species are Li-, F-, PO2
-, PO3

-, CO2H
- 

and C3H3O2
-
 (Fig. 4-6-7 a,d). As described earlier in Ch. 2.6 carbon nitride thin films are 

created by nitrogen incorporation into the amorphous graphitic network [11]. This results 

in various sp, sp2 and sp3 nitrogen substituted functional groups. The use of cluster 

primary ion analysis beams in SIMS results in structurally characteristic species 

generated from thin films [12]. Therefore we expect characteristic CN containing 

secondary ions would arise from fragmentation of N-substituted regions. Here in SIMS 

we see that overall the CNx layer is characterized by Cx
-, CxN

- and higher order CxNy
- 

species (Fig. 4-6-7 c,e,f). For the Cx
- ion series C5

- and higher were also detected, unlike 

the profiling of bare Al where they were absent. Therefore these higher mass Cx
- species 

should be more indicative of CNx and not simply carbon contamination or solvent. For 

characterizing carbon nitride the Cx
- ion series should arise from fragmentation of both 

graphitic and N-substituted regions. This is important to consider because even a CNx 

thin film deposited under a 100% N2 plasma in magnetron sputtering will at most result 

in approx. 1:1 C:N stoichiometry [13]. For the CxN
- ion series C2N

- and higher were also 

detected, unlike the lone CN- species in the bare Al profiling. The CxNy
- (y > 1) series is 

of particular interest due to their complete absence in the profiling of bare GF Al (Figs. 

4-6-1, 4-6-2). Therefore they should be the most analytically useful in TOF-SIMS 

characterization of CNx thin films. Higher mass CxNy
- species are typically not observed 

intensely with monoatomic primary ion analysis beams like Cs+ and Ga+, due to 

excessive fragmentation of the sample surface structure during the collision cascade 

[4,14-15]. The CxNy
- species shown here in the profiling were the most intense species of 

this type in the spectra. There were many ions of this type but they all appeared to behave 
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similarly in the uncycled film. These series of peaks go into m/z of a few hundred since 

this is a polymeric thin film even though there is no long range order. 

 

Overall these results show that for TOF-SIMS characterization of CNx films it is 

important to focus on higher order C and CN peaks. This is due to significant overlap 

(interference) of lower order peaks with adventitious carbon, nitrogen and oxygen species 

on the sample surface. In this work beginning around C5
- and C2N

- respectively we can be 

confident that these species arise predominantly from the CNx film. Additionally this 

work shows the importance of utilizing polyatomic primary ions as the analysis beam to 

achieve strong intensities of characteristic high mass secondary ions. Higher order CNO 

containing species were not detected when profiling the CNx region. Similarly the 

intensity of 18O- is much lower in this region which suggests very low oxygen content 

present in the CNx layer as gaseous occlusions (Fig. 4-6-7 a). This is a very important 

requirement for application of these materials as anodes in lithium ion batteries. Moisture 

and gaseous oxygen content under the cycling conditions in this work may cause 

unwanted electrochemical processes. Similarly this is why aprotic carbonate solvents are 

used for electrolytes. The proportion of characteristic CNx ion species do not 

significantly change when profiling through CNx layer. Therefore the proportions of 

functional groups should be fairly consistent throughout the CNx layer. The plasma 

parameters for magnetron sputtering deposition were stable throughout the 20 minute 

deposition time. Based on these observations we can be fairly certain that the CNx film 

has a homogenous composition within the thickness of 75 nm for the coated samples 

investigated in this work. 

 

The layered structure results in a distinct interfacial layer located between the CNx film 

and bulk Al metal (Fig. 4-6-7 b). Considering the maxima of Al oxide species around 

170 sec this is likely an interfacial oxide. In a similar fashion to depth profiling of 

uncycled bare GF Al and MC Al in previous sections there was likely partial oxide re-

growth during preparation of the substrate. The local intensity maxima of electrolyte 

species in this region is possibly a matrix effect which will increase the ionization yields 

of secondary ions containing electronegative atoms such as O and F [1]. Si was also 
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detected as an interfacial maxima, likely again due to polishing with SiC paper. As the 

interfacial layer is traversed, bulk aluminium Al2
- and Al3

- species rapidly rise in intensity 

and plateau at approximately 200 sec. In addition we identified unique interfacial species 

in the form of AlC- and AlN- ions in the same profile region. These ions may possibly 

arise from fragmentation of aluminium carbides and nitrides respectively. AlCN- as well 

as higher order AlxNy
- and AlxCy

- species were not detected, which may possibly be due 

to fragmentation of those species into AlC-/AlN- and/or low ionization yield.  

 

The presence of an Al-C composite layer at the interface should be beneficial considering 

the superior cycling capacity and stability of these materials compared to Al or graphite 

itself [16-17]. Formation of hard aluminium nitrides is known to occur under nitrogen 

plasma deposition conditions on Al [18]. A practical use of this method is in the 

automotive industry to improve the low hardness and wear resistance of pure Al. Nitrides 

of first row transition metals have also shown some promise as an anodic material [19]. 

However the cycling performance of aluminium nitrides in lithium ion batteries has never 

been investigated. In our case it appears that the process of magnetron sputtering 

modifies the Al surface due to chemical reactivity with the bombarding CN-containing 

species. This is an addition to the expected reactivity of CN species formation occurring 

inside the plasma. Therefore magnetron sputtering for our deposition conditions is not 

simply just a physical sputtering phenomenon. In addition to being receptive towards 

lithium ions the formation of these interfacial species may improve adhesion of CNx to 

bulk Al. This is important due to the required volume changes of lithiation-delithiation in 

these anodic materials. 

 

Fig. 4-6-8 a-f shows the depth profile of the uncycled area of the annealed Al-CNx 

sample AC2. Based on our labeling criterion the CNx layer is approximately 0-110 sec, 

interfacial layer 110-165 sec and finally bulk Al 165+ sec. Therefore the series of 

characteristic CN containing ions are shorter in terms of sputtering time relative to the 

non-annealed sample AC1. This suggests that the CNx film is more compact in the 

annealed sample (Fig. 4-6-8 e-f). This is likely due to stress relief in the film, which at 

temperatures up to 200oC predominantly arises from the combination of decreased nitrile 
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content and the conversion of N-C sp3 to N=C sp2 bonding [20]. The intensity 

proportions of Cx
-, CxN

- and CxNy
- ion series do not change noticeably in the "bulk" of 

the CNx layer when annealed. However as profiling approaches the interface of this 

annealed sample the CxN
 -series of ions do show different onsets of intensity decay (Fig. 

4-6-8 e). C5N
-, C7N

- and C9N
- show the earliest decay, followed by C4N

-, C6N
- and C8N

-, 

then C2N- and finally C3N
-. This is in contrast to the uncycled area of the non-annealed 

sample where the entire set of CxN
- ions showed a similar onset of intensity decay (Fig. 

4-6-7 e). As in the non-annealed sample AC1 the Cx
- and CxNy

- series of ions here in AC2 

all show a similar onset of intensity decay around the CNx-Al interface (Fig. 4-6-8 c,f). It 

is not clear how to explain the discrepancy in these interfacial CNx ion trends between 

the non-annealed and annealed Al-CNx. Clearly the preferred fragmentation pathways for 

sputtering of these various CNx species must be interrelated. It stands to reason that a low 

mass CNx species may be formed from fragmentation of both small and large nitrogen-

substituted functional groups. Perhaps there is formation of unique CNx-containing 

interfacial phases in the annealed sample that are not present in the non-annealed sample. 

The interfacial distribution of AlN- and AlC- appears to be broader in the annealed 

sample (Fig. 4-6-8 b), even though the interfacial layers of both non-annealed and 

annealed samples show comparable thickness according to our labeling scheme. This 

behaviour suggests increased formation or diffusion of interfacial aluminium nitrides and 

carbides upon thermal annealing. Taken together, these data suggest that some chemical 

interactions occur between Al and CNx during annealing. This modification may be 

beneficial for improving film adhesion to the bulk Al substrate upon lithiation-

delithiation.  

 

Shown in Fig. 4-6-9 a-f are the depth profiles of the cycled area of the non-annealed Al-

CNx sample AC1. In this non-annealed Al-CNx like in cycled bare GF Al (Fig. 4-6-2) 

we detect high Li-, Al2
- and Al3

- intensities immediately. It should be noted that we did 

not detect any compound intermetallic ions of the type Li-C-N-Al, Li-C-Al or Li-N-Al, 

or AlN- and AlC- in the SIMS analysis of both non-annealed and annealed cycled Al-

CNx. Similar to LixAly intermetallics in cycled bare GF Al, they may be present in the 

material but not emitted and detected as ions. Similarly, we observe electrolyte species at 
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high intensities relative to those in the uncycled version. As in the cycled bare GF Al the 

SEI species appear to be more concentrated near the surface, within the first 50 sec. 

However, unlike with the previous samples, we observe sharp minima in the intensities of 

intermetallic, electrolyte and oxide species at ca. 100 s sputtering time (Fig. 4-6-9 a,b,d). 

Within this same region we also observe sharp maxima in characteristic CNx species 

(Fig. 4-6-9 c,e,f). According to our labeling criterion this CNx-rich region extends from 

50 sec to approximately 150 sec in the profile. This feature in the profiling likely 

corresponds to the CNx film remnants that were observed near the surface of the 

intermetallic alloy in the SEM images of non-annealed Al-CNx AC1 (Fig. 4-4-24 a). It 

also corresponds to the nitrogen content observed in the EDX spectra of flat versus 

porous regions (Table 4-4-30). The fact that the SEI and Li concentrations go through 

their minima in CNx film clearly indicate that there is no or very little intercalation of Li 

into the CNx. Since intercalation of Li ions into graphite is well known, one might expect 

similar intercalation into CNx as well. However, our SIMS data rule out this possibility. 

Overall TOF-SIMS depth profiling is still a very useful tool to determine where the CNx 

film is located after cycling these materials.  

 

Apart from this initial localization of CNx ions described above the depth profiles do not 

differ significantly from that of cycled GF Al (Fig. 4-6-2). After 300 sec most ion species 

except for decreasing CN ions plateau or show minimal change. Therefore the 200+ sec 

region can again be considered rich in intermetallic alloy. This is in agreement with the 

underlying porous morphology of cycled Al-CNx being similar to cycled GF Al after 4x8 

cycling experiment (Figs. 4-1-13 e, 4-4-24 b). As with GF Al, the concentration of SEI 

components remains high throughout the film indicating formation of a nanoporous 

structure.  

 

Shown in Fig. 4-6-10 a-f are the depth profiles of the cycled area of the annealed Al-CNx 

sample AC2. As in the non-annealed version the profiling of Li-, Al2
- and Al3

- suggests 

the presence of an intermetallic porous framework filled with SEI, consistent with the CV 

(Figs. 4-4-1, 4-4-2). However, unlike the case with non-cycled Al-CNx sample (AC1), no 

clear localization of the CNx layer can be made and therefore all characteristic CNx 
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peaks are detected consistently throughout the profiling depth of the cycled area of the 

annealed sample (Fig. 4-6-10 c,e,f). All of these species show significantly lower 

intensities relative to the CNx ion maxima in the cycled area of the non-annealed sample 

(Fig. 4-6-9 c,e,f). The only exception appears to be C4N
-, possibly due to mass 

interference with another ion (Fig. 4-6-10 e). C- and C2
- are also elevated throughout the 

profile but not considered significant due to overlap with adventitious carbon. Within this 

same profiling depth of depressed CNx ions the intermetallic and SEI species conversely 

show strong intensities (Fig. 4-6-10 a,b,d). Overall these results suggest that cycling of 

annealed CNx, as opposed to non-annealed CNx, resulted in CNx reacting or otherwise 

interacting with the LiAl phase so that the CNx films does not exist anymore at the 

surface of the electrode. SEM data do suggest that while some remnants of the CNx film 

can be seen in non-annealed sample (Fig. 4-4-24 a), they are not found in annealed CNx 

sample (Fig. 4-4-24 c). Another possible explanation is that CNx species become buried 

under the growing LiAl intermetallic phase and thus were not reached in profiling the 

annealed Al-CNx sample AC2 (since we did not profile the whole thickness of the 

sample). Therefore the SIMS profiles of cycled annealed Al-CNx (AC2) appear to 

support the conclusions made from the SEM morphology and EDX spectra (Fig. 4-4-24 

c-d, Table 4-4-30).  

 

As in the non-annealed Al-CNx (AC1) the interfacial AlN- and AlC- species were again 

not observed anywhere in cycled profiling depth of AC2 (Fig. 4-6-10 b). Considering the 

remaining CNx appears beneath the alloy the interfacial species may remain deep below, 

near the alloy/Al interface. Again we cannot be certain of this because the sputtering time 

of 1 sec per scan only resulted in less than 1 um of profiling depth. Even at a low 

temperature of 150 oC the annealing results in much more homogenous behaviour in the 

cycled profiles of AC2 (Fig. 4-6-10). The initial instability seen for all annealed Al-CNx 

profiles within the first 100 sec may be due to increased roughness near surface. Another 

possibility is some small initial fluctuations in the analysis and sputter beam currents. 

Considering the homogenous profile behaviour it does not appear that this cycled area 

has layers rich in any specific components. Therefore we did not attempt to assign labels 

corresponding to different regions. 
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Surface Profilometry of samples AC1 and AC2 

 

After TOF-SIMS depth profiling we performed surface profilometry on these Al-CNx 

samples (Fig. 4-6-11 a-b). The surface profile of the non-annealed Al-CNx sample AC1 

shows an average step height of 5.6 um for this cycled area, which is defined as the 

difference in the average height of region A2 compared to A1 (Fig. 4-6-11 a). This step 

height is comparable to that observed previously in cycled bare GF Al (Fig. 4-6-3). 

However the surface roughness is significantly higher, possibly due to the presence of the 

highly cracked CNx layer seen in the SEM images (Fig. 4-4-24 a-b). 

 

The increased homogeneity of the annealed Al-CNx sample AC2 upon lithiation-

delithiation is demonstrated physically in its surface profile (Fig. 4-6-11 b). The average 

step height of 5.9 um is comparable to the non-annealed version AC1. However the 

roughness of the cycled region is considerably smaller. Overall these SEM, SIMS and 

surface profilometry results suggest that thermal annealing even at lower temperatures 

may be an effective tool for creating a more homogenous Al-CNx anode nanostructure. 

This modified anode could then be more resilient against the detrimental effects of 

volume change in lithiation-delithiation. 
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Fig. 4-6-11: Surface Profiles for (a) non-annealed AC1 and (b) annealed AC2 75% 

N2 Al-CNx anodes after being subjected to 4x8 experiments in Ch. 4.4. Line scan is 

from gasket area to cycled area to gasket area. Step height is average difference of 

A1 and A2 areas. 
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To conclude, the main outcome of our SIMS study of Al-CNx samples was that SIMS 

does not show any significant intercalation of Li into CNx phase. Both films showed 

formation of relatively uniform highly porous Li-Al intermetallic phase. For non-

annealed samples, some CNx can be found at the surface of the sample, whereas for 

annealed samples CNx was either buried under the growing LiAl intermetallic phase or 

reacted with it during galvanic cycles.  

 

4.6.4 Non-annealed 75% N2 25+75 nm Al-Al-CNx anode 

ACM2 from Ch. 4.5 

 

TOF-SIMS Secondary Ion Depth Profiles of ACM2 

 

Shown in Fig. 4-6-12 a-d and Fig. 4-6-13 a-d are the secondary ion depth profiles for 

non-annealed 75% N2 25+75 nm Al-Al-CNx anode ACM2 in both uncycled and cycled 

areas after the 4x8 experiment. For all depth profiles the vertical axis is the raw ion 

intensity in counts with the horizontal axis as the total time in seconds that the Cs+ sputter 

beam has been active. Intensities on the vertical axis are shown in logarithmic scale to 

magnify low intensities of some characteristic secondary ions. Depth profiling was 

performed on the uncycled area of this sample until the bulk Al region was reached. This 

corresponds to 300 sec of sputter time. For the cycled area we were not certain of the 

thickness of the intermetallic alloy at the time. Therefore we stopped SIMS profiling of 

the cycled area once most ion species plateaud in intensity. For ACM2 this corresponds 

to 400 sec of sputter time. After SIMS analysis we did surface profilometry to reveal that 

the average step height of the cycled area was several micrometers thick. Bulk Al, Al 

oxide, thin film Al, CNx and interfacial layers were defined in Fig. 4-6-12 a-f with 

vertical dashed lines. These regions were approximated by requiring at least 75% of the 

maximum intensity of ions characteristic of that layer [3].  
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Figure 4-6-12: TOF-SIMS negative secondary ion depth profiles of uncycled area 

for non-annealed 75% N2 25+75 nm Al-Al-CNx anode ACM2 after being subjected 

to a 4x8 experiment in Ch. 4.5. Vertical axis is raw ion intensity counts. Horizontal 

axis is total active time in seconds for Cs
+
 sputter beam. Vertical dashed lines denote 

the approximated regions of CNx film, first interfacial layer, Al thin film, second 

interfacial layer and bulk Al respectively.  
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Figure 4-6-13: TOF-SIMS negative secondary ion depth profiles of cycled area for 

non-annealed 75% N2 25+75 nm Al-Al-CNx anode ACM2 after being subjected to a 

4x8 experiment in Ch. 4.5. Vertical axis is raw ion intensity counts. Horizontal axis 

is total active time in seconds for Cs
+
 sputter beam.  
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First we consider the depth profile of the uncycled area of non-annealed Al-Al-CNx 

(ACM2) in Fig. 4-6-12 a-f. As expected the Al thin film layer in Al-Al-CNx results in 

additional discrete profiling regions as compared to Al-CNx (Fig. 4-6-7). Therefore in 

this anode we have both film-film and film-metal interfaces. Based on our labeling 

criterion the CNx layer is approximately 0-80 sec and first interfacial layer 80-115 sec. 

This is followed by the thin Al film layer at 115-165 sec, second interfacial layer 165-215 

sec and finally bulk Al at 215+ sec. The electrolyte species (Li-, F-, PO2
-, PO3

-, CO2H
-, 

C3H3O2
-) present in uncycled Al-Al-CNx (Fig. 4-6-12 a,d) do not show an initial sharp 

intensity drop like in uncycled Al-CNx (Fig. 4-6-7 a,d). However the number of counts is 

still comparable so the electrolyte should still exist here as surface contamination. The 

discrepancy between these two types of samples may be due to less solvent present 

within the chosen analysis area of ACM2. As expected the electrolyte species now show 

local intensity maxima at both interfaces of ACM2, likely again due to matrix effects. 

 

The first interface (CNx-Al film) centered at 100 sec results in a maximum of AlN- 

intensity (Fig. 4-6-12 b). This localization of AlN- here shows that unique interfacial 

species can be formed from reactivity of two different sputtered layers. The second 

interface (Al film - bulk Al) centered at 180 sec is dominated by the partial surface oxide 

present on bulk Al again after substrate preparation (Fig. 4-6-12 b). In Al-Al-CNx the 

interfacial AlC- species instead shows a maxima near the Al-Al interface. This is unusual 

given the localization of AlC- near the CNx-Al interface in the Al-CNx samples (Fig. 4-

6-7 b). Al oxide species are also detected intensely at the first interface of ACM2 though 

less than at second interface. This is likely due to the plasma being temporarily turned off 

after sputtering of the thin Al layer, before sputtering of the CNx layer, in order to allow 

the turbo pump to cool down between deposition steps. The deposition chamber has very 

low oxygen content but a pause would allow some brief accumulation after deposition of 

the thin Al film. Al2
- and Al3

- intensities show a plateau after the first interface with a 

small decrease centered at the second interface (Fig. 4-6-12 b). After passing the second 

interface into the bulk Al the intensities increase again to higher values relative to those 

in the Al film. This may be due to increased density in the bulk Al relative to sputtered 

soft Al film, which should increase the sputter yield of Al containing species. Except for 
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this discrepancy there were no other apparent differences in profiling of the Al film 

versus bulk Al. 

 

The proportion of characteristic Cx-, CxN
- and CxNy

- species in Al-Al-CNx (Fig. 4-6-12 

c,e,f) does not significantly change compared to those observed in Al-CNx (Fig. 4-6-7 

c,e,f). This is expected considering the magnetron sputtering deposition parameters for 

the CNx layer were identical to that of Al-CNx anodes. However the profile region for 

CNx in Al-Al-CNx appears considerably shorter than in Al-CNx. According to our 

labeling above this CNx region is approximately until 80 sec compared to 130 sec in Al-

CNx (Fig. 4-6-7 c,e,f). At the same time, CNx ion intensities are still considerably higher 

at the first (CNx-Al film) interface beyond 80 sec (Fig. 4-6-12 c,e,f), compared to CNx-

bulk Al interface in Al-CNx (Fig. 4-6-7 c,e,f). This suggests that there is some 

penetration or reaction of CN containing species with the Al thin film layer. In particular, 

some CNx species may be pushed inwards or "implanted" in a deeper layer of the sample 

during the collision cascade caused by sputtering. In TOF-SIMS depth profiling this is 

commonly referred to as a "knock-in" effect [2]. These implanted CNx species may be 

emitted by a sputtering event later in the profiling. Considering the relative softness of 

the sputtered Al thin film it should be easier to "implant" CN containing species there 

compared to bulk Al.  

 

The profiles for cycled Al-Al-CNx (Fig. 4-6-13 a-f) shows some similarities to cycled 

Al-CNx (Fig. 4-6-8 a-f). In particular, an intermetallic framework filled with SEI layer is 

clearly seen in the profiles, whereas the interfacial species of AlN- and AlC- are not 

detected. However the profiling trends for cycled Al-Al-CNx are considerably more 

subtle. First of all, there is a small maxima of CNx intensities (Fig. 4-6-13 c,e,f) 

accompanied by small minima of Al containing ions around 50-200 sec (Fig. 4-6-13 b). 

This is followed by (roughly) plateau behaviour in Al content after 240 sec. Additionally 

the Al3
- ion intensity is a hundred times higher than for Al2

-. This is in sharp contrast to 

intermetallic content in cycled bare GF Al where Al2
- and Al3

- showed similar intensity 

behaviour (Fig. 4-6-2 b). This is consistent with the differences in both the 

electrochemical behaviour and the morphology of the cycled area as revealed by SEM, 
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which shows the occurrence of a unique highly porous honeycomb nanostructure in Al-

Al-CNx (Fig. 4-5-12 c). Taken together with the SIMS data, this suggests that the 

honeycomb structure may constitute an outer intermetallic phase. This outer phase may 

be of lower density with its own distinct composition and arises predominantly from 

lithiation-delithiation of the sputtered Al thin film. It also has more voids as indicated by 

the profiles of the SEI components in this area. The chemical environment of this outer 

layer may create a matrix effect which strongly promotes the formation of Al3
- over Al2

-. 

However, importantly, the Li- content remains remarkably uniform throughout the film 

(Fig. 4-6-13 a) except a narrow area at the sample surface where this signal shows a 

sharp increase initially over the period of ca. 30 sec. This is likely related to the fact that 

SIMS profiling was performed after electrochemical discharge of the anode. Therefore, it 

is no wonder that the Li concentration near the surface should be depleted. What is also 

important is that the concentration gradient for Li containing species at the surface is the 

steepest in the Al-Al-CNx sample, thus suggesting the high reversibility of the lithiation-

delithiation processes and high rate of diffusion in the porous honeycomb nanostructure 

found in Al-Al-CNx.  

 

Surface Profilometry of sample ACM2 

 

After TOF-SIMS depth profiling we performed surface profilometry on this non-annealed 

Al-Al-CNx sample (Fig. 4-6-14). The surface profile of the non-annealed sample ACM2 

shows an average step height of 7.7 um for this cycled area, which is defined as the 

difference in the average height of region A2 compared to A1. This step height as well as 

the surface roughness are considerably larger than that observed previously in cycled Al-

CNx (Fig. 4-6-11 a). This should be related to the formation of the more porous and less 

dense honeycomb nanostructure at the surface of Al-Al-CNx.  
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Figure 4-6-14: Surface Profile for non-annealed 75% N2 25+75 nm Al-Al-CNx anode 

ACM2 after being subjected to 4x8 experiment in Ch. 4.5. Line scan is from gasket 

area to cycled area to gasket area. Step height is average difference of A1 and A2 

areas. 

 

 

To conclude, SIMS profiling allowed us to obtain important information regarding 

distribution of various species inside the cycled and non-cycled Al anodes of various 

structure. It was confirmed that a nanoporous LiAl nanostructure is formed upon repeated 

electrochemical  lithiation-delithiation of Al anodes. The best nanostructure would seem 

to be formed with Al-Al-CNx sample, which correlates well with the electrochemical and 

SEM data. No significant intercalation of Li into CNx phase was observed.  
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4.7 Testing of Electrodes in Prototype Battery Design 

 

Summary 

 

A series of coated and uncoated Goodfellow Al (GF Al) anodes were tested in a 2 

electrode battery prototype utilizing a polyethylene oxide (PEO) based solid polymer 

electrolyte (SPE) and a conductive LiFePO4 cathode. The half-hard GF Al material was 

chosen as the substrate for anodes in battery samples instead of soft McMaster-Carr Al 

(MC Al). This choice was made due to the strain-hardening of GF Al offering improved 

structural stability in repeated scanning and cycling of the resulting intermetallic alloy 

(Ch 4.1 and 4.2). The preparation of battery components and assembly for cell testing has 

been previously described in the experimental details of Ch. 3. Galvanic cycling on the 

battery system was performed in sets with steadily increasing current density and a large 

number of cycles to allow uniform and controlled growth of the porous structure. Cycling 

was then continued in all cases until battery failure was observed, indicated by an 

extreme charge/discharge potential response and zero or near zero coulombic efficiency 

(CE). Physically this may correspond to massive cracking and pulverization of the battery 

active materials and specifically the intermetallic alloy structure present at the anode, 

which results in irreversible loss of capacity, damage to the solid polymer electrolyte, 

changes of the internal resistance, etc.  

 

Battery testing with a bare polished and etched GF Al anode (BAT1) produced a very 

stable charging/discharging response with high coulombic efficiency across a range of 

current densities. The internal resistance of the battery decreased over time as well as 

with increasing current density, and faster changes were observed at the lowest current 

density. These features indicated growth of the porous structure at the anode with the 

fastest growth occurring early. Most importantly there were no plateau jump events 

observed until current densities approaching those of the half cell failure experiments. 

However, this sample still failed when certain current density limit was exceeded. 

Performing similar battery testing with a non-annealed 75% N2 Al-CNx anode (BAT2) 
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resulted in decreased resistance relative to sample BAT1 and comparable coulombic 

efficiency with stable operation at even higher current densities, due to the CNx film 

acting as an additional scaffold to constrain growth of the porous structure. However, the 

secondary diffusion-limited plateau began to strongly manifest in the discharge portion of 

the BAT2 sample cycles as the current densities approached those of the half-cell 

experiments in previous chapters, and eventual failure also followed. Attempts to further 

improve the performance of battery testing based on Al-CNx anodes by thermally 

annealing the anode prior to testing (BAT3), or reducing the nitrogen content in the CNx 

coating (BAT4) resulted in a deterioration in the performance. In both cases battery 

failure in the form of steep increase in the internal resistance and complete loss of 

reversibility was observed at lower current densities relative to systems with bare GF Al 

(BAT1) or non-annealed 75% N2 Al-CNx (BAT2) anodes.  

 

In this series of experiments, the duration of one cycle was kept constant at each current 

density. As a result, the total charge that was applied to the battery per cycle was 

incrementally increasing with each set of increasing current. This resulted in continuing 

growth of the LiAl nanostructure at high current densities. Our data revealed that the 

structure of the LiAl phase grown at high current densities is very heterogeneous and lead 

to damage of the SPE layer, breaking off of the portions of the nanostructure and eventual 

failure of the battery. Therefore, in the last experiment (BAT5) with non-annealed 75% 

N2 Al-CNx anode, we made sure to apply the same total charge both at low and high 

current densities. This meant that each cycle set had decreased charge/discharge time 

limits as the current density was increased. With this approach we observed dramatically 

improved performance in terms of a stable charge/discharge response and high coulombic 

efficiency at current densities surpassing both the previous battery experiments and the 

half cell failure experiments. This result suggests that in order to have high performance, 

the anodes should have the active LiAl nanostructure electroformed at low rather than 

high current densities.  

 

Surface analysis of the BAT1 anode after cycling revealed a fully reactive highly porous 

morphology. There was an absence of any systematic cracking that we would typically 
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observe for anode failure. Instead the porous structure was overlaid by heterogeneous 

fibrous or disc-shaped features which were confirmed by EDX analysis as also containing 

traces of SPE and cathodic materials. The presence of these contaminants may have 

occurred due to the uncontrolled heterogeneous growth of the porous structure at high 

current densities between the strands of the SPE, leading to greatly increased local 

current densities at this portions of the nanostructure and local degradation of the SPE 

and the cathode. In Al-CNx anodes of battery samples with constant charge/discharge 

times (BAT2 - BAT4) we likewise observed a relatively fully reactive highly porous 

morphology with the same overlaying features. Here we were unable to identify 

morphological features or nitrogen content related to CNx film remaining after lithiation-

delithiation in the BAT2 anode. However careful SEM and EDX analysis of BAT3 and 

BAT4 anodes did reveal certain areas which contained traces of CNx dispersed inside the 

porous LiAl structure. Overall the surface analysis here suggested that the growth of the 

LiAl phase causes most of the CNx to be buried underneath the porous structure.  

 

The proportional charge/discharge times of the final battery experiment (BAT5) resulted 

in a significantly smoother and regular morphology that mostly contained a unique and 

very regular honeycomb morphology with nanometer-size regular pores found 

throughout the material. It is likely that the reversibility and good performance of this 

material is related to the presence of such pores that can accommodate the volume change 

upon lithiation without changing the overall dimensions of the anode and therefore 

without associated damage to the SPE and the battery assembly. Additionally, in contrast 

with all other samples, this proportional conditioning approach resulted in some areas 

where relatively intact SPE and CNx films can be located on the anode surface. No 

morphological features and copper content indicative of cathodic material contamination 

was found for this sample. This suggested improved structural stability of SPE and 

cathodic materials relative to BAT2, BAT3, BAT4 experiments. To investigate the initial 

lithiation-delithiation reactivity of a non-annealed 75% N2 Al-CNx anode in battery 

testing, an additional experiment (BAT6) was performed with very limited cycling. This 

revealed a highly heterogeneous anode surface with limited reactivity and significant 

intact CNx film still remaining. In this case the intermetallic alloy formed and broke 
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through the coating only at few active sites with the remaining CNx film located at a 

lower elevation surrounding these active regions.  

 

4.7.1: Galvanic Cycles and Calculations 

 

Shown in Fig. 4-7-1 are typical galvanic cycles measured in a battery prototype utilizing 

a GF Al anode, LiFePO4 cathode as well as a PEO-TiO2 solid polymer electrolyte at a 

current density of 0.13 mA/cm2. One can see that the battery prototype can readily 

withstand 100 charging-discharging cycles without noticeable changes. 

 

 

 

Figure 4-7-1: Battery galvanic cycles with a PEO-TiO2 solid polymer electrolyte, 

LiFePO4 cathode and a GF Al anode at current density of 0.13 mA/cm
2
 for 100 

cycles. 

 

Shown in Fig. 4-7-2 are the characteristic features of these galvanic cycles to which we 

will frequently refer in our presentation and discussion of the battery results. The battery 
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galvanic cycles show the charging and discharging regions, the IR drop due to the solid 

polymer electrolyte resistance, the coulombic efficiency and the charging/discharging 

voltages. These features are generally similar to the features observed in the 4x8 liquid-

cell experiments, but now the cell voltage rather than potential of one electrode, anode, is 

measured. Therefore, the features appear “reversed” since the cell voltage is measured 

between the cathode and the anode.  

 

 

 

Figure 4-7-2: Characteristic features of galvanic cycles for lithiation-delithiation in a 

battery prototype setup with a solid polymer electrolyte, LiFePO4 cathode and a GF 

Al anode at a current density of 0.065 mA/cm
2
. Numbers indicate the features of 

interest: (1) potential overshot (2) anode lithiation and cathode delithiation plateau 

(3) IR drop (4) anode delithiation and cathode lithiation plateau (5) discharge tail.  

 

As described in Ch. 3.15.2 after applying the current density that charges the prototype, 

the cell potential sharply rises and a small overshoot of the potential is observed at the 

beginning of each charging region, which indicates the start of the charging process (1). 

This local potential maximum is followed by a single long plateau which we term the 
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"charging plateau" (2) involving lithiation of the anode and delithiation of the cathode. 

Similar to the half cell experiments this charging portion will typically continue until it is 

terminated by a time constraint. Then the opposite current density is applied and we 

observe the instantaneous IR drop (3). After the IR drop there is soon another single long 

plateau which we term the "main discharging plateau" (4) involving delithiation of the 

anode and lithiation of the cathode. Fitting the linear portion of the main discharging 

plateau and dividing by the total charging time allows for calculation of the coulombic 

efficiency (CE) used to describe the reversibility of lithiation-delithiation in the battery 

system. As we leave the main discharging plateau region the potential will begin to 

decrease again. As the potential further decreases there may be one or multiple additional 

changes of inflection corresponding to additional electrochemical processes of a very 

short duration (5). As in the half-cell results presented in Ch. 4.1 to 4.4 these additional 

'secondary' or 'tertiary' discharge processes will typically appear at higher current 

densities (5). The battery cycle terminates when the cell potential reaches a lower preset 

limiting value, which in all battery tests was 0V vs. Li+/Li.  

 

In theory both charge and discharge plateaus of the cycle are dependent on lithiation-

delithiation processes occurring at both electrodes simultaneously. However in practice 

we made the LiFePO4 cathode provide an excess of lithium. Its composition is not 

expected to change significantly in regards to lithium content throughout a cycle. 

Therefore the cycle features for the battery prototype are dominated by lithiation-

delithiation processes occurring at the anode. Unlike the half-cell experiments described 

in previous sub-chapters we note the charging and discharging plateaus here in battery 

testing are clearly not flat. There may be considerable upward potential drift within the 

charging plateau and downward potential drift in the discharging plateau. As the current 

density is increased this potential drifting may further increase and the significance of 

this feature will be explained in the results below. While not shown here in this sample 

figure each battery system will eventually reach a current density where signs of 

systematic failure appear in the cycling. In that case the charge/discharge plateau drifting 

will become extreme due to an excessive IR drop and the CE will rapidly decrease to 

zero. 
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To describe how the cycle features relate to electroformation of LiAl phase in the battery 

system, we consider the first full set of eight galvanic cycles (Fig. 4-7-3) of the first 

sample BAT1 utilizing a bare polished and etched GF Al anode at a current density of 

0.033 mA/cm2 with charge/discharge times of 500 seconds each. The very first battery 

cycle of the BAT1 sample entirely involves formation of a new intermetallic LiAl phase. 

The plateau voltage is higher than for the subsequent cycles indicating higher overvoltage 

for the formation of new phase on a foreign substrate. There is very minimal potential 

overshot and the charging plateau is flat. In the next cycles there is a progressively higher 

potential overshot followed by a decrease in the voltage leading to a short flat portion, 

which is in turn followed by a gradual increase in the voltage. This indicates that we first 

charge the LiAl phase formed during previous cycles and then continue to progressively 

form new intermetallic phase formation with each additional cycle in the porous structure 

created during delithiation of the previous cycles. The overshot is present because 

formation of a new phase usually requires higher overvoltage. Charging of the already 

formed phase occurs at lower potentials, and then the voltage increases again when new 

portion of the phase is formed.  

 

During these scans, the electrode undergoes a major change from a bare Al to surface 

coated with developed nanostructured LiAl intermetallic phase. Therefore, we observe 

major changes in all the parameters: the output voltage, the coulombic efficiency (CE) 

and the internal resistance (R) of the cell. The evolutions of the coulombic efficiency and 

resistance (R) are shown in Fig. 4-7-4 and Fig. 4-7-5 respectively at the four current 

densities used. The R values in Ω cm2 of Fig. 4-7-5 were obtained by dividing the 

potential difference of the IR drop for each cycle by the current density. For both of these 

plots the horizontal axis is the cumulative number of cycles for all sets together with 

individual sets at current densities of 0.033, 0.065, 0.13 and 0.32 mA/cm2 indicated in 

black, red, blue and green curves respectively. 
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Figure 4-7-3: Full set of battery galvanic cycles of sample BAT1 with a solid 

polymer electrolyte, LiFePO4 cathode and a bare polish + etch GF Al anode at a 

current density of 0.033 mA/cm
2
 for 8 cycles with charge/discharge times of 500 

seconds each.  
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Figure 4-7-4: Coulombic efficiency for the main discharge plateau in battery 

galvanic cycles of sample BAT1 with a solid polymer electrolyte, LiFePO4 cathode 

and a bare polish + etch GF Al anode at current densities of 0.033 (black), 0.065 

(red), 0.13 (blue) and 0.32 (green) mA/cm
2
. Horizontal axis shows the cumulative 

number of cycles of all sets together. The arrow in the green curve indicates the 

onset of battery failure.  
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Figure 4-7-5: Resistance calculated from the IR drop for battery galvanic cycles of 

sample BAT1 with a solid polymer electrolyte, LiFePO4 cathode and a bare polish + 

etch GF Al anode at current densities of 0.033 (black), 0.065 (red), 0.13 (blue) and 

0.32 (green) mA/cm
2
. Horizontal axis shows the cumulative number of cycles of all 

sets together. The arrow in the green curve indicates the onset of battery failure.  

 

One can see that the growth of the intermetallic phase during the first set of cycles is 

indeed accompanied by a rapid and very substantial decrease in the resistance, as well as 

an improvement in the coulombic efficiency. These facts are related to (a) the change in 

the surface area of the intermetallic phase in contact with the electrolyte as compared to 

the bare Al, and (b) changes in the kinetics and reversibility of the electrochemical 

lithiation-delithiation on nanostructured LiAl and bare Al substrates. The latter is in 

particular evidenced by the change in the CE values that cannot be explained by the 

changes in the surface area.  

 

The trends described in the first set of BAT1 will continue to lesser degrees at higher 

current densities. This indicates that the electroformation and structural changes related to 
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the LiAl intermetallic phase continue in these conditions too. Shown in Fig. 4-7-6 are 

galvanic cycles from the (a) beginning and (b) middle of the sets at current densities of 

0.065 (red) and 0.13 (blue) mA/cm2. Sample cycles from the end of the respective sets 

are not shown because the difference in features from the middle cycles (Fig. 4-7-6 b) is 

very minimal. We note there is a marked decrease of resistivity (R) as the intermetallic 

nanostructure continues to be formed at the higher current densities of 0.065 and 0.13 

mA/cm2 (Fig. 4-7-5). Furthermore, unlike the half-cell experiments described in previous 

chapters, Fig. 4-7-6 suggests that the IR drop and the accompanying charge-discharge 

plateau separation do not increase with increasing current density for battery cycles. This 

indicates more efficient growth and better quality of the nanostructure formed in battery 

prototypes with SPE. Also worth noting is that the plateau separation decreases almost 

exclusively due to an increase in the discharge voltage; the charging voltage stays 

roughly the same. This indicates improvements in the delithiation kinetics as the 

nanostructure is formed.  
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Figure 4-7-6: (a) Initial and (b) middle battery galvanic cycles of sample BAT1 with 

a solid polymer electrolyte, LiFePO4 cathode and a bare polish + etch GF Al anode 

at current densities of 0.065 (red) and 0.13 (blue) mA/cm
2
. For both current 

densities cycling was performed for 100 cycles each with charge/discharge times of 

500 seconds. Cycles have been offset in figure b to overlap the curves on the same 

time scale.  
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The changes in the CE and R trends are more gradual during the second and third sets 

(Figs. 4-7-4, 4-7-5). The CE of the second set (red) is improved over the first set (black) 

because there is relatively less phase formation remaining at this point (Fig. 4-7-4). The 

CE of the third set (blue) is then further improved over the second set (red) as the phase 

formation is relatively more complete by now. The resistance also continues to decrease 

indicating further albeit more subtle improvements in the delithiation kinetics. Eventually 

we reach the fourth and the highest current density set at 0.32 mA/cm2. Here multiple 

signs of battery failure appeared in the cycles of BAT1 with rapidly increasing IR drop, 

extreme drifting of charge/discharge plateau potentials and CE dropping to zero. We do 

not show sample cycles for this final set. Instead we show CE and R values in the 

respective plots (green curves) and indicate the onset of failure with an arrow (Figs. 4-7-

4, 4-7-5). 

 

Overall lithiation-delithiation in this solid electrolyte based battery prototype with a GF 

Al anode produces a very stable charging/discharging response with good CE at lower 

current densities. There is a small increase of charge/discharge plateau potential drifting 

with increasing current density and the internal resistance shows minimal change beyond 

the early cycles. Increasing the current density does slightly alter the discharge peak 

shape but the secondary diffusion-limited discharge process does not appear (Fig. 4-7-6). 

Most importantly there is a complete absence of any plateau potential jump events in both 

charging and discharging portions of the cycle for BAT1. This stable battery operation 

with Al anodes is made possible for two reasons. First is conditioning of the battery for a 

large number of cycles at lower current densities. This allows a regular nanostructure to 

gradually form close to equilibrium conditions. Secondly there is the mechanically rigid 

solid polymer electrolyte (SPE) which likely acts as a scaffold to restrain the phase 

growth, further aided by the inclusion of TiO2 nanoparticles. However, approaching the 

current densities of the half-cell failure experiments in the fourth set here, the BAT1 

battery system fails rapidly (Fig. 4-7-4), even with 100 cycles of conditioning in the two 

previous sets. The reason may be uncontrolled LiAl phase growth at this highest current 

density, which is more heterogeneous and dendrite-like (Fig. 4-7-28 a). This results in 
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damage of the SPE and possibly formation of a short circuit due to direct contact of 

anodic and cathodic active materials.  

 

As a next step we tested if applying a non-annealed 75% N2 75 nm CNx coating to the 

GF Al anode would produce a stable battery charging/discharging response at these 

higher current densities, with the CNx film acting as an additional scaffold to contain 

phase growth. Shown in Fig. 4-7-7 is the first full set of eight battery galvanic cycles of 

the second sample BAT2 utilizing a non-annealed 75% N2 75 nm Al-CNx anode at a 

current density of 0.033 mA/cm2 with charge/discharge times of 500 seconds each. With 

an Al-CNx anode the features of the battery results and their evolution will be largely 

similar to the previous sample with bare GF Al anode (BAT1). However there are some 

notable differences beginning with Fig. 4-7-7. The first cycle again shows formation of 

entirely new intermetallic LiAl phase as indicated by the slow potential increase and an 

elevated charge plateau together with an excessively large IR drop. A visibly long flat 

charge plateau appears by the end of the first set of BAT2 with very minimal upward 

potential drifting. This is in contrast to the charge portion shape by the end of the first set 

of BAT1 (Fig. 4-7-3). The continued appearance of a relatively flat charge plateau here in 

BAT2 suggests that the CNx coating is able to partially suppress the intermetallic phase 

formation relative to the same cycling conditions with bare GF Al anode. This 

containment of volume change by the CNx coating was observed previously in the 4x8 

half-cell results of non-annealed Al-CNx versus bare GF Al anodes in Ch. 4.4. As a result 

of the impeded phase formation during early cycling of BAT2 both the resistance (Fig. 4-

7-9) and coulombic efficiency (Fig. 4-7-8) for this sample are initially much worse as 

compared to BAT1 but improve rapidly. 
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Figure 4-7-7: Full set of battery galvanic cycles of sample BAT2 with a solid 

polymer electrolyte, LiFePO4 cathode and a non-annealed 75% N2 75 nm Al-CNx 

anode at a current density of 0.033 mA/cm
2
 for 8 cycles with charge/discharge times 

of 500 seconds each. 
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Figure 4-7-8: Coulombic efficiency for the main discharge plateau in battery 

galvanic cycles of sample BAT2 with a solid polymer electrolyte, LiFePO4 cathode 

and a non-annealed 75% N2 75 nm Al-CNx anode at current densities of 0.033 

(black), 0.065 (red), 0.13 (blue) and 0.32 (green) mA/cm
2
. Yellow curve shows 

coulombic efficiency of secondary diffusion-limited discharge plateau at 0.32 

mA/cm
2
. Horizontal axis shows the cumulative number of cycles of all sets together.  
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Figure 4-7-9: Resistance calculated from the IR drop for battery galvanic cycles of 

sample BAT2 with a solid polymer electrolyte, LiFePO4 cathode and a non-annealed 

75% N2 75 nm Al-CNx anode at current densities of 0.033 (black), 0.065 (red), 0.13 

(blue) and 0.32 (green) mA/cm
2
. Horizontal axis shows the cumulative number of 

cycles of all sets together.  

 

 

Shown in Fig. 4-7-10 are galvanic cycles from the (a) beginning and (b) middle of the 

sets at current densities of 0.065 (red), 0.13 (blue) and 0.32 (green) mA/cm2. As usual 

intermetallic phase growth continues at all current densities in progressively smaller 

amounts as seen in the decreasing resistance (Fig. 4-7-9) and increasing CE (Fig. 4-7-8) 

between the initial (a) and middle cycles (b). We note that there is some subtle variation 

in the R and CE trends of BAT2 after the initial cycles at higher current densities (red, 

blue, green). This behaviour may possibly be related to degradation of the CNx film as 

intermetallic phase growth continues, because CNx contributes towards the reversibility 

and kinetics of lithiation-delithiation at the Al-CNx anode.  
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Figure 4-7-10: (a) Initial and (b) middle battery galvanic cycles of sample BAT2 

with a solid polymer electrolyte, LiFePO4 cathode and a non-annealed 75% N2 75 

nm Al-CNx anode at current densities of 0.065 (red), 0.13 (blue) and 0.32 (green) 

mA/cm
2
. For all current densities cycling was performed for 200 cycles each with 

charge/discharge times of 500 seconds. Cycles have been offset in figure b to overlap 

the curves on the same time scale. Arrow in green curve of figure b indicates 

appearance of secondary diffusion-limited discharge plateau.  
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When we reach the highest current density of 0.32 mA/cm2 (green) here in BAT2, at first 

there are no signs of battery failure (Fig. 4-7-10 a). However, even though the 

charge/discharge response is stable the secondary diffusion-limited discharge plateau 

rapidly grows in appearance by the middle of the set (indicated by arrow in green curve 

of Fig. 4-7-10 b). This secondary process that grows over time to a CE of 16% restricts 

the CE of the main discharge plateau at 0.32 mA/cm2 (green) down to just 50% (Fig. 4-7-

8). At the same time, the internal resistance R remains low until the end of the set (Fig. 4-

7-9).  

 

Overall battery testing with a non-annealed Al-CNx anode produces a quite stable 

charging/discharging response with good CE at lower current densities. Here there is a 

consistent increase of charge/discharge plateau potential drifting with increasing current 

density. Both the R and CE trends differ slightly from that of the bare GF Al sample 

BAT1 (Figs. 4-7-4, 4-7-5), possibly due to structural changes occurring in the CNx film 

during phase growth at the anode surface. Once again there is a complete absence of any 

plateau potential jumps in both charging and discharging portions of BAT2 cycles. At the 

higher current density of the fourth set (0.32 mA/cm2) the BAT1 system had a rapid 

deterioration leading to complete failure by the 130th cycle (Figs. 4-7-4, 4-7-5). Here the 

fourth set of BAT2 still has a very stable charge/discharge response for all 200 cycles 

even though the diffusion-limited discharge has become significant (Figs. 4-7-8, 4-7-9) 

and the CE dropped significantly below acceptable levels. The presence of the CNx 

coating must be the key reason for the improvements here of BAT2 over BAT1. These 

results are distinct from the half-cell failure experiments of Al-CNx anodes relative to 

bare GF Al anodes in Ch. 4.4, where Al-CNx did offer a higher maximum reversibility of 

lithiation-delithiation but the overall degradation in performance was significantly worse 

(Figs. 4-4-9, 4-4-10). This effect should be attributed to the presence of solid polymer 

electrolyte (SPE) and the additional mechanical and volumetric constraints of the SPE-

based battery cell architecture in controlling the volume change. Therefore the CNx film 

and the rigid solid polymer electrolyte can effectively act together as two scaffolds to 

control the phase growth at the anode. In contrast, for a liquid-based half cell the CNx 

coating will rapidly crack into pieces and disappear from the electrode surface.  
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We then attempted to further improve the strong performance of BAT2 by modifying the 

Al-CNx anode either through post-deposition thermal annealing (sample BAT3) or by 

applying CNx film with lower nitrogen content (sample BAT4). In particular, we 

expected that thermal annealing treatment would offer improved mechanical properties of 

the CNx film and further restrict growth of the porous structure at higher current 

densities. 

 

Shown in Fig. 4-7-11 is the first full set of eight battery galvanic cycles of the third 

sample BAT3 utilizing an annealed 75% N2 75 nm Al-CNx anode at a current density of 

0.033 mA/cm2 with charge/discharge times of 500 seconds each. With an annealed Al-

CNx anode one observes several important differences compared to battery cycling with 

the previous non-annealed Al-CNx anode (BAT2). Initially in the first set there is an 

unstable charging potential response observed with two discharge plateaus. However, 

further cycles showed improved internal resistance and coulombic efficiency (Figs. 4-7-

12, 4-7-13), although we sometimes observed some random changes in these properties. 

According to our half-cell results in Ch. 4.4.2, thermal annealing improves the 

mechanical stability (hardness) of the CNx film on the anode (Fig. 4-4-24 c), leading to 

enhanced containment of volume change in the CV (Fig. 4-4-2). The behaviour observed 

in this experiment is generally consistent with this picture. The annealed CNx films may 

be more rigid and prone to sudden cracks and ruptures, which caused the random jumps 

in CE and R.  
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Figure 4-7-11: Full set of battery galvanic cycles of sample BAT3 with a solid 

polymer electrolyte, LiFePO4 cathode and an annealed 75% N2 75 nm Al-CNx 

anode at a current density of 0.033 mA/cm
2
 for 8 cycles with charge/discharge times 

of 500 seconds each.  
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Figure 4-7-12: Coulombic efficiency for the main discharge plateau in battery 

galvanic cycles of sample BAT3 with a solid polymer electrolyte, LiFePO4 cathode 

and an annealed 75% N2 75 nm Al-CNx anode at current densities of 0.033 (black), 

0.065 (red), 0.13 (blue) and 0.32 (green) mA/cm
2
. Yellow curve shows coulombic 

efficiency of secondary diffusion-limited discharge plateau at 0.32 mA/cm
2
. 

Horizontal axis shows the cumulative number of cycles of all sets together. The 

arrow in the green curve indicates the onset of battery failure.  
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Figure 4-7-13: Resistance calculated from the IR drop for battery galvanic cycles of 

sample BAT3 with a solid polymer electrolyte, LiFePO4 cathode and an annealed 

75% N2 75 nm Al-CNx anode at current densities of 0.033 (black), 0.065 (red), 0.13 

(blue) and 0.32 (green) mA/cm
2
. Horizontal axis shows the cumulative number of 

cycles of all sets together. The arrow in the green curve indicates the onset of battery 

failure.  
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Shown in Fig. 4-7-14 are galvanic cycles from the (a) beginning and (b) middle of the 

sets at current densities of 0.065 (red) and 0.13 (blue) mA/cm2. At higher current 

densities for BAT3 the single discharge plateau behaviour remains with decreasing 

resistance (Fig. 4-7-13) and increasing coulombic efficiency (Fig. 4-7-12) characteristic 

of continued intermetallic phase growth. However, signs of an unstable charge/discharge 

response remain with multiple plateau potential jumps seen in the middle cycles at 0.065 

mA/cm2 (Fig. 4-7-14 b) and the resistance trend (Fig. 4-7-13). At the same time, the 

shape and the parameters of the potential traces by the middle of the third set of cycles 

(blue) clearly improved in all respects, such as plateau separation, etc. This indicates the 

formation of mature LiAl nanostructure.  

 

At the highest current set of 0.32 mA/cm2 for BAT3 the secondary diffusion-limited 

discharge plateau is immediately apparent at a CE of 15% (yellow curve), which restricts 

the CE of the main discharge plateau to 60% (green curve) (Fig. 4-7-12). The appearance 

of this secondary process at this higher current density is consistent with the discharge 

behaviour observed for the sample with non-annealed Al-CNx anode (BAT2) (Figs. 4-7-

8, 4-7-10 b). For BAT3 the secondary process will disappear by the 55th cycle of the 

fourth set (yellow), increasing the CE of the main discharge plateau (green) to 89% (Fig. 

4-7-12). However the onset of battery failure will soon follow beginning from the 75th 

cycle and accelerating beyond the 125th cycle (indicated with arrow). 
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Figure 4-7-14: (a) Initial and (b) middle battery galvanic cycles of sample BAT3 

with a solid polymer electrolyte, LiFePO4 cathode and an annealed 75% N2 75 nm 

Al-CNx anode at current densities of 0.065 (red) and 0.13 (blue) mA/cm
2
. For both 

current densities cycling was performed for 200 cycles each with charge/discharge 

times of 500 seconds. Cycles have been offset in figure b to overlap the curves on the 

same time scale.  
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Overall we observe a worse battery performance with thermal annealing of the Al-CNx 

anode prior to application of the solid polymer electrolyte layer and cell assembly. Even 

at lower current densities there is a relatively unstable charging/discharging response 

with multiple plateau potential jumps (Figs. 4-7-11, 4-7-14 b). The annealed version is 

still strongly diffusion-limited at the current density of the fourth set (0.32 mA/cm2) with 

the appearance of the secondary process (Fig. 4-7-12). Battery failure then occurs with an 

extreme IR drop and severe loss of CE at a current density where the non-annealed Al-

CNx anode version (BAT2) still had stable performance for 200 cycles (Figs. 4-7-8, 4-7-

9). In the surface analysis of annealed Al-CNx anodes cycled under liquid half-cell 

conditions (Ch. 4.4.2) we observed increased adhesion and stability of the CNx film (Fig. 

4-4-24 c-d). As discussed in the non-annealed Al-CNx battery sample (BAT2) the solid-

state battery cell architecture here should help in allowing the CNx coating to constrain 

the growth of the porous structure at the anode. The addition of thermal annealing of the 

Al-CNx anode might make the CNx coating too mechanically rigid. This would be 

problematic because it may result in the coating excessively constraining the intermetallic 

phase formation, possibly causing cracking (pulverization) of the porous structure. As in 

the solid polymer electrolyte layer a certain degree of elasticity is required in the CNx 

coating. Another consideration is that the thermal annealing treatment applied to the 

anode also includes the GF Al substrate itself which may soften its mechanical properties 

and therefore impair reversibility. The relation between softened mechanical properties in 

bulk Al materials and poor cycling performance was documented previously in Ch. 4.2 

with McMaster-Carr Al (MC Al) anodes.  

 

Even worse performance was obtained using a non-annealed 25% 75 nm Al-CNx anode 

BAT4, which did produce initially a more stable charge/discharge response at lower 

current densities, but failure was even more immediate at the highest current density. 

Shown in Fig. 4-7-15 is the first full set of eight galvanic cycles of a battery with the 

BAT4 anode at a current density of 0.033 mA/cm2 with charge/discharge times of 500 

seconds each. Overall the cycle features again suggest a significant restriction of initial 

intermetallic phase growth by the CNx film at the anode surface. The effect is severe 

enough such that a visible potential overshot is not observed until the fourth cycle. 
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Furthermore, the charging voltage in the first cycles is very high and only gradually 

decreases with cycling. Another notable feature is the main discharge plateau that 

actually does not appear in the discharge portion of the first cycle. Even in the second 

cycle the main discharge plateau is only barely seen. The overall discharge peak of the 

first few cycles is instead almost entirely dominated by the tertiary diffusion-limited 

discharge plateau at a potential close to 1V. Taken together, these cycle features suggest 

that the initial intermetallic phase formation is very much impeded when the nitrogen 

content in the CNx film is decreased.  

 

 

 

Figure 4-7-15: Battery galvanic cycles of sample BAT4 with a solid polymer 

electrolyte, LiFePO4 cathode and a non-annealed 25% N2 75 nm Al-CNx anode at a 

current density of 0.033 mA/cm
2
 for 8 cycles with charge/discharge times of 500 

seconds each.  
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However the remaining cycles in this set start to show noticeable potential overshots in 

the charging portion followed by significant upward drifting in the charge plateau 

potential. In comparison the latter cycles of the first set of sample BAT2 with 75% N2 Al-

CNx anode showed charging portions that remained relatively flat (Fig. 4-7-7). This 

contrast suggests that the intermetallic phase formation is actually less restricted with 

decreased nitrogen content in the CNx film of the anode for sample BAT4. Increased 

nitrogen content in the plasma during CNx deposition will lead to increased incorporation 

of nitrogen-containing functional groups in the film. This results in further cross-linking 

of the CNx structure effectively increasing its mechanical stability (hardness). The 

decreased volume change containment here in BAT4 is consistent with half-cell results of 

25% N2 versus 75% N2 Dural-CNx in Ch. 4.4 (Fig. 4-4-13). As the phase growth 

progresses in the first set of BAT4 we see the typical trends of decreasing resistance (Fig. 

4-7-17) and increasing coulombic efficiency (Fig. 4-7-16). 
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Figure 4-7-16: Coulombic efficiency for the main discharge plateau in battery 

galvanic cycles of sample BAT4 with a solid polymer electrolyte, LiFePO4 cathode 

and a non-annealed 25% N2 75 nm Al-CNx anode at current densities of 0.033 

(black), 0.065 (red), 0.13 (blue) and 0.32 (green) mA/cm
2
. Horizontal axis is the 

cumulative number of cycles of all sets together. The arrow in the green curve 

indicates the onset of battery failure.  
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Figure 4-7-17: Resistance calculated from the IR drop for battery galvanic cycles of 

sample BAT4 with a solid polymer electrolyte, LiFePO4 cathode and a non-annealed 

25% N2 75 nm Al-CNx anode at current densities of 0.033 (black), 0.065 (red), 0.13 

(blue) and 0.32 (green) mA/cm
2
. Horizontal axis shows the cumulative number of 

cycles of all sets together. The arrow in the green curve indicates the onset of battery 

failure.  
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Shown in Figs. 4-7-16 – 4-7-18 are the evolution of the coulombic efficiency and the 

internal resistance with cycling, as well as typical galvanic cycles from (a) the beginning 

and (b) the middle of the sets at higher current densities of 0.065 (red) and 0.13 (blue) 

mA/cm2. Intermetallic phase growth continues but at a progressively smaller rate. The 

tertiary diffusion-limited discharge plateau remains in the second set (red), restricting the 

CE of the main discharge plateau, but disappears by the third set (blue). The 

charge/discharge response remains relatively stable here for BAT4, except for some brief 

intermittent failure observed around cycle 140 of the third set, seen in the CE plot (blue 

curve) (Fig. 4-7-16). As described for the BAT2 and BAT3 battery samples, there are 

some minor variations in the R and CE values at higher current densities in BAT4 beyond 

the early cycles, suggesting that structural changes occur in the CNx film as intermetallic 

phase growth continues. At the highest current density set of 0.32 mA/cm2 we observed a 

very rapid onset of battery failure. Additionally, no secondary diffusion-limited plateau 

was observed too, likely due to the rapid failure. Here the CE of the main discharge 

plateau improved from an initial value of 63% up to 88% by the 15th cycle, followed by a 

very fast decline (Fig. 4-7-16). 
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Figure 4-7-18: (a) Initial and (b) middle battery galvanic cycles of sample BAT4 

with a solid polymer electrolyte, LiFePO4 cathode and a non-annealed 25% N2 75 

nm Al-CNx anode at current densities of 0.065 (red) and 0.13 (blue) mA/cm
2
. For 

both current densities cycling was performed for 200 cycles each with 

charge/discharge times of 500 seconds. Cycles have been offset in figure b to overlap 

the curves on the same time scale.  
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In general we observe comparable battery performance at lower current densities with 

lower nitrogen content in the CNx film. The charge/discharge response is reasonably 

stable and the CE of the main discharge plateau exceeds 80%. However the performance 

at the higher current density of the fourth set (green) (Fig. 4-7-16) is significantly worse 

than the non-annealed 75% N2 version (BAT2) (Fig. 4-7-8), with the onset of failure 

occurring after just 15 cycles. The battery sample with a bare GF Al anode (BAT1) did 

not show onset of failure at the highest set (green) until approximately 75 cycles (Fig. 4-

7-4). Therefore the use of a lower nitrogen content CNx film here in BAT4 does not 

result in any improvement in the reversibility of lithiation-delithiation compared to bare 

GF Al anode without CNx coating. The poor performance of battery samples with 25% 

N2 versus 75% N2 Al-CNx anodes is consistent with half-cell results of 25% N2 versus 

75% N2 Dural-CNx anodes described previously in Ch. 4.4. In those tests we observed 

significantly faster performance degradation upon decreasing the nitrogen content in the 

CNx film, with increased frequency of plateau potential jumps and faster deterioration of 

coulombic efficiency (Figs. 4-4-20, 4-4-21). As in the half-cell tests, the positive effect of 

nitrogen-rich 75% N2 Al-CNx anodes is likely related to greater incorporation of 

nitrogen-based functional groups in the CNx film. This allows for more cross-linking 

within the CNx structure effectively increasing the hardness of the film. Therefore the 

75% N2 CNx film has an improved ability to act as a scaffold to control the intermetallic 

phase growth through containment of volume changes, particularly at higher current 

densities. Apparently, the 25% film is too soft. Additionally, the increased nitrogen 

incorporation may improve film adhesion through increased interfacial reactivity with the 

GF Al substrate. 

 

Throughout these series of battery experiments the charging/discharging time was kept 

unchanged at 500 seconds. Therefore the total charge (Q) being applied to both the anode 

and the cathode per cycle was consistently increasing set over set, which resulted in 

continuing formation of the new portions of the LiAl intermetallic phase at progressively 

higher current densities. We were concerned that by doing this we may be accelerating 

the battery failure through more heterogeneous or dendritic growth of this porous 

structure at high current densities. This uncontrolled growth as also evidenced by SEM 
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data (Ch. 4.7.2) may have caused damage to the SPE, leading to a short circuit through 

direct contact of anodic and cathodic active materials, or loss of contact. The failure 

would then manifest in the form of extreme IR jumps and complete loss of CE. Therefore 

we performed another battery experiment with a non-annealed 75% N2 Al-CNx anode 

BAT5, similar to BAT2, but with the progressively decreasing cycle durations at high 

current densities to keep the total applied charge constant. In contrast, the cycle duration 

at low current densities was increased, to increase the amount of LiAl phase formed in 

these conditions. The anode and battery cell preparation was identical to the second 

sample (BAT2) described earlier in this chapter. 

 

Shown in Fig. 4-7-19 are the first two full sets of eight galvanic cycles of the BAT5 

prototype utilizing a non-annealed 75% N2 75 nm Al-CNx anode at current densities of 

0.016 (black) and 0.033 (red) mA/cm2 with charge/discharge times of 1000 seconds each. 

Fig. 4-7-20 shows the coulombic efficiency of the main discharge plateau, with the 

resistance (R) calculated from the IR jump represented in Fig. 4-7-21 for the eight current 

densities used in this experiment, cumulatively in a series numbered 1 to 8. 
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Figure 4-7-19: Battery galvanic cycles of sample BAT5 with a solid polymer 

electrolyte, LiFePO4 cathode and a non-annealed 75% N2 75 nm Al-CNx anode at 

current densities of 0.016 (black) and 0.033 (red) mA/cm
2
 for 8 cycles each and 

charge/discharge times of 1000 seconds.  
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Figure 4-7-20: Coulombic efficiency for the main discharge plateau in battery 

galvanic cycles of sample BAT5 with a solid polymer electrolyte, LiFePO4 cathode 

and a non-annealed 75% N2 75 nm Al-CNx anode at current densities of 0.016 (1, 

black), 0.033 (2, red), 0.065 (3, blue), 0.13 (4, green), 0.32 (5, brown), 0.46 (6, yellow), 

0.59 (7, orange), 0.65 (8, purple) mA/cm
2
. Horizontal axis is the cumulative number 

of cycles of all sets together.  
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Figure 4-7-21: Resistance calculated from the IR drop for battery galvanic cycles of 

sample BAT5 with a solid polymer electrolyte, LiFePO4 cathode and a non-annealed 

75% N2 75 nm Al-CNx anode at current densities of 0.016 (1, black), 0.033 (2, red), 

0.065 (3, blue), 0.13 (4, green), 0.32 (5, brown), 0.46 (6, yellow), 0.59 (7, orange), 0.65 

(8, purple) mA/cm
2
. Horizontal axis is the total number of cycles of all sets together.  

 

 

At the lowest current density (black curve) we observe the typical cycling behaviour 

characteristic of initial growth of the new intermetallic phase at the anode surface similar 

to that described in previous samples (Fig. 4-7-19). The rapid increase in the surface area 

of the growing phase as well improvement of the lithiation-delithiation kinetics causes a 

steep drop in the resistance after a few cycles (Fig. 4-7-21) and a large increase in the CE 

of the main discharge plateau (Fig. 4-7-20). Here in the BAT5 sample the CE is initially 

very poor in the first set (black curve) and is accompanied by the dominant appearance of 

the tertiary diffusion-limited discharge plateau (Fig. 4-7-19). Progressing to the second 

set (red curve) (Fig. 4-7-19) we see clear evidence of electroactive intermetallic phase 

formed during the previous cycles in the form of more pronounced charge plateau, lower 

resistance (Fig. 4-7-21), and further improved CE (Fig. 4-7-20). The improved CE of the 
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main discharge plateau in the second set is directly related to the steadily diminishing 

tertiary discharge process.  

 

Shown in Fig. 4-7-22 are galvanic cycles from the (a) beginning and (b) middle of the 

next two sets at current densities of 0.065 (blue) and 0.13 (green) mA/cm2, in which the 

charge/discharge times have now been cut to 500 sec each compared to the 1000 sec in 

the previous two sets. The number of cycles was increased to 100 for these two sets to 

ensure proper conditioning of the porous structure at the anode before further increases in 

current density. Here in the blue curve of Fig. 4-7-22 the tertiary discharge process is 

even more minor so the CE of the main discharge plateau improves again (Fig. 4-7-20). 

By the fourth set (green curve) this tertiary process disappears altogether (Fig. 4-7-22). 

The internal resistance also continues to decrease (Fig. 4-7-21). 

 

Shown in Fig. 4-7-23 are galvanic cycles from the (a) beginning and (b) middle of the 

last four sets at current densities of 0.32 (black), 0.46 (red), 0.59 (blue) and 0.65 (green) 

mA/cm2. The charge/discharge times were decreased in the order of 250 (black), 200 

(red), 150 (blue) and 100 (green) seconds respectively. A minimum of 50 cycles each was 

performed to ensure sufficient conditioning before progressing to the next current 

density.  
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Fig. 4-7-22: (a) Initial and (b) middle battery galvanic cycles of sample BAT5 with a 

solid polymer electrolyte, LiFePO4 cathode and a non-annealed 75% N2 75 nm Al-

CNx anode at current densities of 0.065 (blue) and 0.13 (green) mA/cm
2
. For both 

current densities cycling was performed for 100 cycles each with charge/discharge 

times of 500 seconds. Cycles have been offset in figure b to overlap the curves on the 

same time scale.  
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Fig. 4-7-23: (a) Initial and (b) middle battery galvanic cycles of sample BAT5 with a 

solid polymer electrolyte, LiFePO4 cathode and a non-annealed 75% N2 75 nm Al-

CNx anode at current densities of 0.32 (black), 0.46 (red), 0.59 (blue) and 0.65 

(green) mA/cm
2
. Charge/discharge times of 250, 200, 150 and 100 seconds each 

respectively. Cycles have been offset in figure b to overlap the curves on the same 

time scale.  
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We note a few interesting features here in these latter cycle sets of BAT5, all indicative 

of stable and improved performance at high current densities. Firstly it would appear that 

the IR drop progressively increases with current density going from 0.32 mA/cm2 (black) 

to 0.65 mA/cm2 (green) (Fig. 4-7-23). When dividing by the current density the 

resistance will actually keep further decreasing until the 0.46 mA/cm2 set (red), where it 

will approximately remain constant even when the current density is further increased to 

0.59 mA/cm2 (blue) and 0.65 mA/cm2 (green) (Fig. 4-7-21). Secondly we note that even 

at these higher current density sets the secondary diffusion-limited discharge process 

does not appear after the main discharge plateau. In the experiment with constant 

charge/discharge times and an identical non-annealed 75% N2 Al-CNx anode (BAT2) 

this secondary process was readily apparent by the 0.32 mA/cm2 set (Figs. 4-7-8, 4-7-10 

b). Therefore, the CE of the main discharge plateau for BAT5 rises above 90%, which is 

the highest reversibility observed in any battery prototype tested in this chapter (Fig. 4-7-

21).  

 

The absence of additional phase formation at higher current densities is consistent with 

the CE and R trends that show minimal change in the last three sets (Figs. 4-7-20, 4-7-

21). It is also consistent with the data at the lower current densities where the cycle 

features (Fig. 4-7-19), CE (Fig. 4-7-20) and R (Fig. 4-7-21) trends suggest that most of 

the new phase growth occurs during that time. Overall, the restriction of intermetallic 

phase growth by proportionally decreasing the charge/discharge times, coupled with the 

volume change containment and improved conductivity offered by the combined SPE 

and CNx layers, results in a stable charge/discharge response at current densities that 

significantly surpass the previous battery experiments. There are no plateau potential 

jump events, degradation of coulombic efficiency or sharply elevated resistance that 

would be characteristic of battery failure. The improved regularity of BAT5 due to 

limited and controlled growth of the porous structure is also demonstrated by the SEM 

and EDX results. A summary of the average coulombic efficiencies of the main discharge 

plateau of the five battery samples presented in this chapter is shown in Table 4-7-24.  
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Table 4-7-24: The average coulombic efficiency of the main discharge plateau for 

battery tests with a solid polymer electrolyte, LiFePO4 cathode and different anode 

materials. The anodes are bare GF Al oxide removed (BAT1), non-annealed 75% N2 

75 nm Al-CNx (BAT2, BAT5), annealed 75% N2 75 nm Al-CNx (BAT3), non-

annealed 25% N2 75 nm Al-CNx (BAT4).  

  

Current Density 

(mA/cm
2
) 

BAT1 BAT2 BAT3 BAT4 BAT5 

0.016 - - - - 47.4 

0.033 77.7 64.1 77.9 45.7 81.3 

0.065 84.1 76.4 88.5 78.5 84.9 

0.13 87.0 86.8 90.2 84.3 90.7 

0.32 Failed 54.1 Failed Failed 92.0 

0.46 - - - - 92.1 

0.59 - - - - 92.2 

0.65 - - - - 91.2 
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4.7.2 SEM Images 

 

Shown in Fig. 4-7-26 are SEM images at low magnification (100x) of the center area of 

the five battery anodes: bare GF Al (BAT1), non-annealed 75% N2 Al-CNx (BAT2), 

annealed 75% N2 Al-CNx (BAT3), non-annealed 25% N2 Al-CNx (BAT4) and non-

annealed 75% N2 Al-CNx (BAT5) after galvanic cycling and separation from the solid 

polymer electrolyte (SPE) and cathode. From these low magnification images we observe 

that the first four anodes with constant charge/discharge times for each cycle set (Fig. 4-

7-26 a-d) show a fairly heterogeneous morphology, with relatively large morphological 

features (10 µm and more) and some debris present at the surface. However, the coverage 

is 100% suggesting relatively uniform reactivity across the anode surface. The fifth Al-

CNx anode with proportionally decreased charge/discharge times (Fig. 4-7-26 e) showed 

a much finer structural feature and much smoother morphology; however, one can also 

see certain heterogeneity and in particular the presence of certain sub-regions that appear 

as lighter spots in the image.  

 

Fig. 4-7-27 shows the center area of the same battery anodes at higher magnification of 

1000x. Here for the first four anodes we see the features of the porous structure emerge 

with varied roughness (Fig. 4-7-27 a-d). For the last anode (Fig. 4-7-27 e) we observe 

that the lighter region shown previously in Fig. 4-7-26 e is actually an overlaying film on 

the right, while the region on the left contains the fine porous structure. No evidence of 

systematic cracking of the intermetallic structure or pulverization that may cause battery 

failure appears in these first two sets of SEM images. Surveying across the entire area of 

each anode surface also did not reveal such cracking features. There was some local 

variation in morphology such as small hills or pits, but closer inspection still revealed a 

porous structure in all cases.  
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Figure 4-7-26: SEM images of center area for battery anodes (a) bare GF Al 

(BAT1), (b) non-annealed 75% N2 Al-CNx (BAT2), (c) annealed 75% N2 Al-CNx 

(BAT3), (d) non-annealed 25% N2 Al-CNx (BAT4), (e) non-annealed 75% N2 Al-

CNx (BAT5) after galvanic cycling followed by separation from the solid polymer 

electrolyte and cathode. Magnification of 100x.  
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Figure 4-7-27: SEM images of center area for battery anodes (a) bare GF Al 

(BAT1), (b) non-annealed 75% N2 Al-CNx (BAT2), (c) annealed 75% N2 Al-CNx 

(BAT3), (d) non-annealed 25% N2 Al-CNx (BAT4), (e) non-annealed 75% N2 Al-

CNx (BAT5) after galvanic cycling followed by separation from the solid polymer 

electrolyte and cathode. Magnification of 1000x.  
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Fig. 4-7-28 shows the center area of the battery anodes at a yet higher magnification of 

10000x. In general we were not able to obtain SEM images beyond this magnification 

due to excessive surface charging. Here at this highest magnification we immediately 

observe several important details. In the first three anodes (Fig. 4-7-28 a-c) we can see 

that the rough porous structure observed in the lower magnification images actually has a 

very specific heterogeneous morphology consisting of fibrous or disc-shaped pieces. This 

is especially pronounced in bare GF Al sample (BAT1) of Fig. 4-7-28 a. The presence of 

CNx coatings (Fig. 4-7-28 b-c) partially suppressed this feature but it is still evident in 

some areas of the images. In the fourth anode (BAT4) these features are not observed 

(Fig. 4-7-28 d) and the structure generally resembles that found in bare Al anodes in 

liquid half-cell experiments. On the contrary, the image of Fig. 4-7-28 e (BAT5) clearly 

shows the “honeycomb” fine porous structure that was noted before in some Al-based 

anodes, especially, those containing CNx films and thin sputtered Al layers (Ch. 4.5.2) 

and was attributed to formation of fine porous nanostructure by controlling the volume 

change. Obviously, the same situation is observed here. Unlike other samples. the BAT5 

sample was cycled with decreasing the cycle duration at high current densities so that to 

maintain the lithiation charge constant. Therefore, after the initial conditioning and 

formation of LiAl phase at low current densities, no further LiAl growth was permitted 

and the sample was restricted to lithiation-delithiation of the LiAl phase already formed 

previously resulting in the fine honeycomb morphology. 

 

Following the same argument, the disc-shaped features found in Fig. 4-7-28 a-c should 

be related to uncontrolled growth of LiAl phase at high current densities right before 

anode failure. They cannot comprise CNx film remnants because they are observed in 

Fig. 4-7-28 a (BAT1, bare GF Al anode), and they are also observed in the "Al edge" 

areas (no CNx present originally). They may be envisioned as “blown-up” honeycomb 

pores evident in Fig. 4-7-28 e and noted in other samples before as a result of excessive 

and not contained volume change. Alternatively, since they were never observed in 

liquid-cell experiments, they may be formed as a result of penetration of the growing 

LiAl phase into the voids between the fibers of the solid polymer electrolyte.  

 



www.manaraa.com

326 

 

 

 

 

Figure 4-7-28: SEM images of center area for battery anodes (a) bare GF Al 

(BAT1), (b) non-annealed 75% N2 Al-CNx (BAT2), (c) annealed 75% N2 Al-CNx 

(BAT3), (d) non-annealed 25% N2 Al-CNx (BAT4), (e-g) non-annealed 75% N2 Al-

CNx (BAT5) after galvanic cycling followed by separation from the solid polymer 

electrolyte and cathode. Magnification of 10000x.  
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A question still remains as to where the CNx is located after lithiation-delithiation in 

battery tests with Al-CNx anodes. For the three Al-CNx anodes with constant 

charge/discharge times (BAT2 - BAT4) SEM imaging of the CNx (center) areas did not 

reveal any fine morphological features that may correspond to cracked CNx film 

remaining after cycling. This suggests that any CNx film remaining after battery cycling 

must be located deeper, possibly buried within or beneath the porous structure close to 

the bulk Al. This is distinct from both 4x8 and failure experiments of Al-CNx anodes in a 

liquid half-cell (Ch. 4.4) where CNx film remnants were readily identified on top of the 

porous structure after cycling (Fig. 4-4-24 a).  

 

It was also revealed using EDX analysis that the flatter and lighter regions found in SEM 

image of non-annealed 75% N2 Al-CNx (BAT5) sample of Fig. 4-7-27 e and also shown 

in higher magnification in Fig. 4-7-28 g are also in fact not CNx films that were 

somehow preserved at the electrode surface. Rather, it was found that these overlaying 

film features of image Fig. 4-7-28 g should correspond to intact SPE remaining on the 

anode after separation. Interestingly, this feature was not observed in other prototype 

samples. This indicates the important role that is played by SPE film in controlling the 

LiAl phase growth and conditioning the surface of the anode to form the advantageous 

honeycomb structure. In fact, the LiAl growth should happen inside the voids of the solid 

polymer electrolyte, the latter acting as a scaffold containing excessive phase growth. 

However, the growth should be performed at low current density; otherwise the rate of 

growth becomes too high for the SPE to contain and more heterogeneous and disorder 

morphologies are formed, eventually leading to uncontrolled growth and failure of the 

anode.  

 

To investigate how the Al-CNx anode morphology would appear with very limited 

lithiation-delithiation reactivity we prepared another battery sample BAT6, identical to 

BAT2 and BAT5. In this sample galvanic cycling was only performed at a low current 

density of 0.016 mA/cm2 for 8 cycles, after which the anode was separated with the same 

procedure as previous battery samples and then subjected to surface analysis. Shown in 

Fig. 4-7-29 are SEM images of the BAT6 anode after cycling within the CNx (a) and Al 
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edge (b) areas. The CNx area reveals a highly heterogeneous morphology with 

significant amounts of intact CNx film still remaining on unreactive Al (a). It appears 

that the intermetallic alloy just starts to form and break through the coating. The CNx 

film that remains at a higher elevation then surrounds these porous alloy regions. In the 

Al edge area outside of the CNx area we also see limited reactivity (b). Here most of the 

surface will be dominated by unreactive Al substrate and its typical etching pattern at a 

lower elevation relative to the isolated porous regions containing intermetallic alloy. 

However, even now, one can see that the reacted LiAl phase starts to show the 

characteristic honeycomb morphology. This fact highlights the importance of both CNx 

and SPE scaffolds in forming the honeycomb structure. The CNx film is likely to control 

the phase formation at very early stages. Then its gets buried under the growing LiAl 

phase, which is now controlled not by CNx but by SPE layer. This is confirmed by the 

results of liquid cell experiments of Ch 4.4 which demonstrated that CNx at first shows a 

very positive effect on the reversibility and coulombic efficiency; however, without SPE, 

this effect mostly disappears after 20-30 charge-discharge cycles (Figs. 4-4-9, 4-4-10). 

 

 

 

 

Figure 4-7-29: SEM images of (a) Center area (b) Al edge area of non-annealed 75% 

N2 Al-CNx battery anode (BAT6) after limited galvanic cycling at a current density 

of 0.016 mA/cm
2
 for 8 cycles followed by separation from the solid polymer 

electrolyte and cathode. Magnification of 5000x.  
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4.7.3 EDX Composition Chart 

 

Due to contamination of the anode surface from SPE and cathode material remnants upon 

separation of the anode EDX analysis would likely be of limited usefulness. However we 

still attempted EDX analysis on the Al-CNx anodes separated from battery samples 

BAT2 - BAT6 in an effort to determine the location of the CNx film after cycling near 

the center of the anode surface. For comparison EDX analysis was also performed in the 

cycled Al area near the edge of the anode where there was no CNx film present 

originally.  

 

Shown in Table 4-7-30 is an EDX composition chart in atomic % for the various cycled 

areas of these anodes. The labels "CNx area" and "Al edge area" denote the areas where 

the CNx film was present or absent respectively before testing. As expected all porous 

regions considered as reactive have noticeable contamination from SPE and cathode 

materials. This is observed in the copper and titanium signals as well as the significantly 

elevated oxygen content approaching or exceeding 50%. Flat regions considered as 

unreactive or of limited reactivity have a smaller proportion of these elements. Carbon 

content will come from a possible combination of CNx film remnants, propylene 

carbonate, polyethylene oxide (PEO) as well as carbon black and polyvinylidene fluoride 

(PVDF) binder materials from the cathode. Phosphorous and fluorine content will arise 

from the LiPF6 salt in the SPE remaining after separation. C, O, F and P signals could 

also arise from the products of SEI layer present on or within the anode. The small 

amount of silicon detected should be due to a combination of silicon carbide paper used 

for polishing of electrode substrates, and as an impurity in the GF Al metal substrate 

itself. Lithium content cannot be tracked due to the overlap of its low energy x-rays with 

the baseline peak close to 0 eV. 
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Table 4-7-30: EDX composition chart of cycled center (CNx) and Al edge (Al) areas 

for battery anodes after being subjected to battery testing experiments and then 

separated from the cell assembly. Spectra data was collected at a column voltage of 

7 kV for 50 seconds at 1000x magnification.  

 

 

 

 

 Atomic %  

 Anode  Cycled Area  C  N  O  F  Al  Si  P  Ti  Cu  

BAT2 (a) CNx, porous 7.52  51.60 2.13 15.69 0.38 0.38 7.84 14.47 

(b) Al, porous 5.54  54.74 0.38 8.07 1.39 0.31 10.77 18.80 

BAT6 

*single 

cycle set 

(c) CNx, porous 11.06 0.34 48.37 8.29 20.54 0.14 0.92 8.47 1.87 

(d) CNx, flat 25.72 8.56 7.92 1.19 54.43 0.10 0.08 1.87 0.12 

(e) Al, porous 2.25  50.40 5.36 13.78 2.88 2.08 17.11 6.14 

(f) Al, flat hole  0.78  3.25 0.78 93.66 0.17 0.18 0.89 0.29 

BAT3 (g) CNx, porous 7.32  55.89 0.50 11.76 0.08 0.18 3.55 20.72 

(h) CNx, flat hole 15.78 1.41 18.09 0.96 51.72 0.22 0.51 7.23 4.08 

(i) Al, porous 2.77  61.50 3.35 24.67 0.14 0.28 2.84 4.45 

BAT4 (j) CNx, porous 6.39  49.40 4.97 8.42 0.02 0.30 10.87 19.64 

(k) CNx, flat hole 31.05 4.10 37.39 8.41 14.52 0.05 1.23 3.51 3.25 

(l) Al, porous 3.56  45.74 2.87 9.41 0.02 0.06 10.00 28.34 

(m) Al, flat hole  2.27  43.02 4.88 40.49 0.03 0.33 6.78 2.21 

BAT5 (n) CNx, porous 1.74  64.79 1.14 23.54 0.02 0.24 7.94 0.60 

(o) CNx, flat hole 23.39 11.15 16.10 0.18 48.11 0.13 0.13  0.81 

(p) CNx, flat film 1.49  65.82 1.18 22.74 0.06 0.27 7.88 0.56 

(q) Al, porous 1.98  56.57 0.99 32.51 0.03 0.26 7.40 0.27 

(r) Al, flat hole  4.90  6.87 0.10 84.52 0.05 0.07 3.49 0.01 
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In the non-annealed 75% N2 Al-CNx anode of sample BAT2 we were unable to detect 

nitrogen anywhere throughout the area where the film was present originally (a). 

Attempting a variety of column voltages and acquisition times did not yield a different 

result. Overall the composition of this porous "CNx area" resembles that of the porous 

"Al edge area" outside (b). The absence of nitrogen content here confirms our assessment 

from the SEM images that any CNx film remaining after cycling in this fully reactive 

region must be located much deeper within or buried beneath the intermetallic alloy. 

Moving onto the non-annealed 75% N2 Al-CNx anode of BAT6 the compositions here 

confirm the limited reactivity both in the CNx and Al edge areas seen in the SEM images.  

For the CNx area the porous composition (c) resembles that of BAT2 (a). In contrast the 

flat regions suspected to be intact CNx film show a strong nitrogen signal of 8.5% (d). 

Moving to the Al edge area of BAT6 the porous region in (e) is similar to (c) while the 

flat region in (f) appears to be mostly unreactive Al substrate. In the annealed 75% N2 

(BAT3) and non-annealed 25% N2 (BAT4) Al-CNx anodes we were initially unable to 

locate nitrogen anywhere in the CNx areas (g,j), with the composition obtained being 

similar to the respective Al edge porous areas (i,l). However further investigation of the 

CNx areas in the BAT3 and BAT4 anodes did reveal a few holes that could only be 

located using the higher 7 kV column voltage used in EDX analysis. Acquiring spectra 

here did reveal small nitrogen signals of 1.4% (h) and 4.1% (k) respectively, as well as 

significantly higher carbon signals indicative of CNx. Together with the higher Al 

content and lower O content suggests that these holes are spots of limited lithiation-

delithiation reactivity, compared to the more unreactive flat regions in the CNx area of 

BAT6 (d). 

 

The SEM imaging of the non-annealed 75% N2 Al-CNx anode with proportional 

charge/discharge times (BAT5) suggested that the large overlaying film portions 

observed within the CNx area may consist of intact CNx remaining after lithiation-

delithiation (Figs. 4-7-27 e, 4-7-28 g). The EDX analysis here ("CNx flat film") did not 

reveal any nitrogen signal regardless of the column voltage used (p). Instead the 

composition of these film regions resembled the porous regions ("porous") located 

nearby that were not overlapped by this film (n). This suggests that the overlaying film 
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features are instead intact solid polymer electrolyte remaining after separation of the 

anode. CNx remaining after lithiation-delithiation was located in the "flat hole" regions 

(o) between the porous honeycomb regions away from these overlaying film features. 

Within these flat hole regions the Al signal is also very strong with much lower oxygen 

signal, suggesting very limited lithiation-delithiation reactivity. These regions of 

partial/limited reactivity were also observed in the Al edge area of BAT5 (r). Overall the 

larger proportion of "flat hole" regions (relative to porous) within the CNx and Al edge 

sub-areas in BAT5, suggests that the proportional conditioning approach essentially 

results in significantly less reactivity of the anode surface resulting in significantly less 

formation of the porous structure relative to BAT2 - BAT4. This may help explain why it 

was more difficult to locate these "flat hole" areas with nitrogen signal within the CNx 

areas of those BAT2 - BAT4 samples compared to BAT5. We also note here that unlike 

the other samples the copper content was very low throughout the entire BAT5 anode 

regardless of where EDX analysis was performed (n-r). This can be explained by the fact 

that this sample actually was the only one that did not fail before examination. It is also 

consistent with what we visually observed when separating away the cathode after 

cycling of BAT5. The entire conductive bound assembly of the cathode was still intact 

and uniform in the BAT5 sample after separation, unlike samples BAT2 - BAT4 where it 

was significantly more disordered and heterogeneous. The contrast in morphological 

features and copper content suggests that that samples BAT2 - BAT4 may have failed at 

higher current densities due to pulverization of cathode active materials or short-

circuiting through the SPE layer. In either case, high local currents would be observed 

right before failure that were likely to disturb and break down the SPE layer resulting in 

electrical and mechanical contact between the anode and cathode materials. Therefore the 

proportional conditioning approach used in BAT5 also appears to be beneficial towards 

structural stability of the cathode materials. 
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Chapter 5 

 

5 Discussion 

 

5.1. Mechanism of lithiation-delithiation and formation of the 
porous nanostructure in bulk Al anodes 

 

5.1.1. Structural changes at the surface of Al anodes upon 

lithiation-delithiation 

 

We will first describe the mechanism of lithiation-delithiation and formation of the 

porous structure in the context of a 4x8 experiment with a bare Goodfellow (GF Al) 

anode. Lithiation initially occurs with nucleation of α-LiAl intermetallic phase at surface 

sites of the bulk crystalline (metal) Al that has a high density of mobile dislocations [2]. 

At first, α-LiAl phase is formed that is considered a substitutional solid solution of Li in 

an FCC lattice of Al. The lattice constant for α-LiAl (4.01 Å) is practically the same as 

for Al itself. It has the same FCC structure. The only difference is that we have now Li, 

not Al, in the corners of the unit cell. As lithiation continues, additional sites of α-LiAl 

will be nucleated on the surface of bulk Al. At the same time, the increased lithium 

concentration at the previous sites of α-LiAl will cause crystallization of α-LiAl to the β-

LiAl phase, which has an accompanying lattice expansion from 4.01 to 6.37 Å [2]. This 

is the origin of the volume change in this material. The β-LiAl phase is stable at room 

temperature and has the crystal structure of NaTl, also known as Zintl phase (diamond-

like lattice for Al with Li positioned in the voids of the lattice) [10]. Therefore the initial 

lithiation of bulk Al can be considered as formation of isolated regions of intermetallic 

alloy. Our SEM data suggests that this is indeed the case at early stages of lithiation 

during the first few cycles of lithiation-delithiation.  
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Electrochemically, when sufficient amount of β-LiAl phase is formed, the 

electrochemical cell potential will exhibit a flat charging plateau according to the Nernst 

equation. The potential will stay stable with further formation of β-LiAl because the 

activity of an individual phase does not change with its amount. Usually, the Gibbs phase 

rule is invoked in the literature and it is stated that the independency of the potential 

during the charging is due to the presence of two phases (the number of the 

thermodynamic degrees of freedom in this case is zero). However, strictly speaking, this 

is not necessary because of all phases that may be present at the electrode surface, only 

one will be potential determining (the one with the highest exchange current).  

 

Upon switching to the discharge current initial delithiation will solely occur from these 

isolated porous intermetallic alloy regions at or near the anode surface. This process will 

leave them essentially as isolated Al regions that are depleted of lithium. Importantly, 

delithiation should be accompanied by a decrease in the phase volume so that these Al 

regions will have to develop voids or pores. The delithiation will occur through the same 

system of α and β-LiAl phases producing a discharge plateau [2]. Volume changes 

occurring in the first lithiation and delithiation steps will destroy some SEI layer that was 

formed both on unreacted bulk Al regions and these reactive porous regions [1]. Before 

the second lithiation occurs additional SEI layer will form where there is exposed Al 

material (in either form) after the first delithiation.  

 

The second lithiation that follows forms more intermetallic alloy again inside the 

previously depleted porous Al regions from the first cycle. It will also form new 

nucleation sites at new portions of unreactive Al sites that did not undergo alloying 

previously. With increased nucleation of intermetallic alloy at the surface sites in the 

second lithiation some lithium will penetrate further into the bulk of the anode. This will 

progress as a diffusion-driven front of α-LiAl (a diffusing solid solution) through 

movement of dislocations. In other words the diffusion front of α-LiAl will be 

surrounded by a high density of mobile dislocations. This reaction front was visualized 

by in-situ TEM measurements both initially at the surface and later towards the bulk of 

anode materials and has been described as the "medusa zone" [3]. For SnO2 nanowire 
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anodes the dislocation density of the medusa zone during lithiation-delithiation has been 

estimated to be ~ 1017/m2. This is more than two orders of magnitude greater than what is 

naturally observed in heavily strain-hardened face-centered cubic metals themselves such 

as bulk Al. The second delithiation will occur both from surface sites of α and β-LiAl as 

well as to some degree from lithium that has been incorporated into the α-LiAl solid 

solution further in the bulk of the anode [2]. It will be again accompanied by negative 

volume change leaving behind more pores and/or voids.  

 

Eventually, continued lithiation-delithiation will cause saturation of all surface sites of 

the original bulk Al, resulting in the entire anode surface becoming covered in a porous 

structure either consisting of intermetallic alloy or Al that has been depleted of lithium. 

Therefore there will not be any more unreacted Al near the surface. As these processes 

continue, more lithium will react and diffuse to progressively deeper portions of the 

anode bulk causing more crystallization of α-LiAl to β-LiAl there. Overall, the porous 

structure will become thicker by growing into progressively deeper regions of bulk Al. In 

the end we produce a thick (Fig. 4-6-3), highly porous (Fig. 4-1-13 c,e) structure filled 

with SEI layer (Fig. 4-6-2) compared to the original bulk GF Al (Fig. 4-1-13 a). 

 

It is important to realize that as soon as all electrode surface becomes covered with the 

new phase, any subsequent charging cycle will start with lithiation of the previously 

formed and depleted intermetallic phase. Only if the charge applied to the electrode 

exceeds the capacity of the phase formed previously, new portions of the LiAl phase will 

be formed, resulting in further volume change. However, if the charge does not exceed 

the capacity, the volume changes associated with lithiation-delithiation will be confined 

exclusively within the pores or voids of the intermetallic nanostructure and result in no 

change in the overall dimensions of the anode. This condition will be fulfilled if the 

efficiency of extraction of Li during the delithiation cycle is high, and if no or very little 

Li diffuses into the bulk Al during the charging step. These conditions seem to be easy to 

fulfill if sufficient amount of ordered and reactive intermetallic phase is formed, which is 

structurally and mechanically stable and readily supports electrochemical reactions both 

on its surface and inside the pores/voids. If such a phase is formed, it can be cycled 
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without changing the overall dimensions of the anode and thus without any damage to 

electrolyte or the battery assembly, short-circuiting, etc., the problem that precludes the 

adoption of Al anodes in practical Li ion batteries today. Finding the conditions to form 

such a phase is one of the goals of this thesis.  

 

The importance of proper electroformation and growth of the porous intermetallic phase 

is highlighted by our half-cell failure experiments. In this case the anode is immediately 

subject to a high current density. Therefore the porous structure formation and growth is 

rapid with immediate extreme volume changes compared to the 4x8 experiments. For a 

brief time (around 20 cycles) the system behaves as expected with a rapid decrease in 

plateau separation (resistance) and increase in coulombic efficiency (Figs. 4-1-10, 4-1-

11). However, beyond that point, signs of failure appear quickly, in particular with the 

plateau separation rapidly increasing outside of acceptable tolerances. The reason for 

anode failure is likely pulverization (cracking) of the porous structure that had a higher 

degree of disorder. This highlights the need to use low current densities to form more 

stable and regular intermetallic phase on the surface of Al anode for it to be able to 

withstand prolonged cycling and high charging-discharging rates.  

 

To visualize the progression of the formation of the porous structure let us consider the 

internal resistance (R) associated with lithiation-delithiation that is calculated from the 

charge-discharge plateau separation of a galvanic cycle divided by the current density. 

Shown in Fig. 5-1-1 is the internal resistance (Ω cm2) of the GF Al anode GF1 (oxide 

removed) at the four current densities of the 4x8 experiment from Ch. 4.1. In particular at 

the first set (black curve) we observe a steady marked drop in resistance with each cycle. 

In the second (red) and third (blue) sets the initial resistance further decreases and the 

change over time is more gradual. 
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Figure 5-1-1: Internal resistance calculated from the charge-discharge plateau separation 
of galvanic cycles for bare GF Al anode GF1 (oxide removed) from Ch. 4.1 at current 
densities of 0.13 (black), 0.25 (red), 0.5 (blue) and 1 (green) mA/cm2. 
 

 

This trend can be understood by considering the following equation (Eq. 1): 

 

                                                               ,
A

d
R ρ=                                     (1)                                     

 

where ρρρρ is the specific resistivity, d is the distance between electrodes and A is the 

contact surface area. If we assume that ρρρρ and d remain constant we must conclude that a 

decrease in resistance must be attributed to an increase in the contact area A. As growth 

of the porous structure occurs across the original Al anode surface this effectively 

increases the contact area of this structure which decreases resistance. Therefore the 

resistance based on the charge-discharge plateau separation allows us to track the 

formation of the porous structure in the context of the lithiation-delithiation mechanism 

described previously. The rate of change in coverage (contact area A) of the structure is 
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likely fastest in the first set (black), resulting in the fastest decrease of R (Fig. 5-1-1). In 

the second set (red) the formation continues so the initial R is even lower in the first 

cycle. However the relative change in area is less during this second set, producing a 

smaller decrease over time in R. In the third set (blue) R is again initially decreased but 

the decrease over time is very minimal, because the porous structure has likely covered 

most of the original Al anode area. This is further supported by the initial R of the fourth 

set (green) appearing only slightly smaller. In this fourth set the porous structure should 

now cover the entire original anode surface. As a result there is no further change in 

contact area. Additional growth will now only occur vertically using previously unreacted 

bulk Al material located below the porous structure. This process will noticeably increase 

the internal stresses in the anode. Furthermore there are kinetic (diffusion) limitations to 

consider for lithium transport that start manifesting themselves at this highest current 

density, to be discussed in detail later. Together these two effects cause the resistance to 

now increase over time in the fourth set. 

 

Before we continue it is worth briefly discussing the role of increased oxide content in 

formation of the porous structure. In the literature in-situ TEM studies have revealed that 

the surface oxide in Al nanowire anodes is lithiated into a Li-O-Al layer [6]. This process 

is irreversible and occurs first at more positive potentials than the lithiation onset for LiAl 

formation. In the electrochemistry this irreversible lithiation of the oxide is typically 

associated with initially poor reversibility (coulombic efficiency) as well as increased SEI 

formation. Both of these electrochemical features are consistent with what we observed 

in our data in both GF Al and MC Al systems with increased oxide content. In the initial 

CVs the effect of oxide is readily apparent in increased cathodic currents for SEI 

formation (Figs. 4-1-2, 4-2-1). In the 4x8 galvanic cycles at lower current densities there 

is initially a detrimental effect on coulombic efficiency that gradually becomes minimal 

and eventually disappears at the cycles at higher current densities (Figs. 4-1-7, 4-2-6). 

Therefore the native oxide is initially detrimental for reversibility of both bulk GF Al and 

MC Al  anode systems, likely because it is irreversibly lithiated, but this effect quickly 

disappears as cycling continues. In terms of porous structure formation and growth we 

did observe increased heterogeneity for both anode systems with increased oxide content 
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(Figs. 4-1-13 f, 4-2-12 f), as well as evidence of limited reactivity (Fig. 4-1-13 d). 

Overall we conclude that it is best for the native oxide to be removed from bulk Al 

anodes through a combination of polishing and etching treatment, as well as minimizing 

oxide re-growth prior to and during cycling experiments. 

 

5.1.2. Mechanical Stresses of Lithiation-Delithiation and 

Volume Changes 

  

To better understand the limitations of the Al anodes that are associated with continuous 

pronounced volume changes during their lithiation-delithiation, we consider both the 

contribution of mechanical instabilities within the active material, and also the mass 

transport limitations of lithium in the intermetallic phases. First we consider the internal 

stresses that arise during lithiation/delithiation. We focus our discussion of these stresses 

and their effects in the context of a crystalline structure of bulk Al, and the formation and 

growth of intermetallic phases within it.  

 

Lithiation-delithiation and the associated lithium-metal alloy formation and dissolution 

occurs through movement of dislocations and a change in the lattice dimensions (lattice 

parameters) [2]. To accommodate such changes, a so-called “medusa zone” is formed 

during lithiation near the lithiation front that contains an extremely high density of 

mobile dislocations and produces a dislocation-induced stress (DIS) [4], which is the 

driving force for the structural change and expansion. In the initial stages of lithiation-

delithiation, the lithium incorporation is largely confined to the anode surface. Therefore, 

initially, the DIS is at maximum near the surface of the anode. As lithiation/delithiation 

continues lithium will accumulate to progressively deeper levels in the anode bulk. 

Therefore, the intermetallic alloy formation will also progress towards the bulk of the 

anode. Since lithium transport occurs through the movement of dislocations, the DIS will 

also progress further into the bulk of the anode. This will relatively decrease the DIS near 

the surface and increase it towards the bulk of the anode. Eventually a steady state should 

be reached in which the DIS near the surface and in the bulk is similar.  
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The processes of lithiation-delithiation will also create steep Li-concentration gradients 

within the host material [5]. Therefore at any instant, adjacent regions within the same 

active material may have different crystal phases (structures) and different molar 

volumes. Furthermore, these different co-existing phases would possess different elastic 

properties. The interaction and contact between such regions within a continuum leads to 

mismatch induced stress development through further generation of dislocations. These 

differences depend on transport limitations that are associated with Li diffusivity and 

current density. Therefore they are expected to be more severe at higher charge/discharge 

current densities. 

 

The accumulation of these internal stresses during repeated lithiation-delithiation events 

has profound effects both physically and in terms of the electrochemical results. 

Physically the strain response can be described as elastic-plastic deformation occurring 

through the formation and propagation of cracks or voids within the active material [5]. 

After reactive saturation of surface sites the active material in our Al anode system would 

be considered primarily as the porous structure consisting of intermetallic alloy or Al that 

has been depleted of lithium. Localized cracking between adjacent regions of the porous 

structure will cause loss of electrical contact at the site of the crack. If cracking surrounds 

an entire portion of the porous structure that portion may lose complete electrical contact 

and be rendered inactive. This will usually be accompanied by the loss of mechanical 

contact as well. Overall this form of degradation has been termed 'pulverization' of active 

materials in the literature [6]. We readily observe such systematic cracking in the porous 

structure of our bulk GF Al and MC Al anodes when they are continuously cycled at a 

relatively high current density in a liquid half-cell environment (Figs. 4-1-14, 4-2-13). 

 

Electrochemically, in the continuing lithiation-delithiation of Al anodes, we observed 

increasing charge-discharge plateau separation over time (Fig. 4-3-9). Additionally we 

observed increasing drifting of charge/discharge plateau potentials within the same cycle, 

i.e. increased overvoltage. Both of these effects should be related to the accumulation of 

internal stresses that will then influence the thermodynamics of the electrochemical 

processes [7-9]. Lithiation-delithiation in the form of repeated alloying-dealloying phase 
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formation and dissolution produces internal stresses in the material. There are elastic and 

plastic energies associated with the elastic-plastic strain accommodation of the material 

towards these stresses. The elastic-plastic accommodation energy is an energy barrier 

against lithiation/delithiation. It increases the free energy of the material and decreases 

(makes more negative) the lithiation equilibrium (Nernstian) potential. The decrease of 

lithiation equilibrium (plateau) potential ∆Elithiation can be determined from eq. 2 [9]. 

 

   (2) 

 

where Eo is the theoretical (accommodation-free) equilibrium potential, Ece is the 

lithiation equilibrium potential after consideration of the accommodation process during 

Li ion insertion, ∆Gelastic-lithiation and ∆Gplastic-lithiation are elastic and plastic accommodation 

energies during lithiation process, n is the number of electrons passed per atom of host 

material reacted and F is Faraday's constant. The volume changes during the Li ion 

extraction will also be accommodated by the elastic-plastic process [7-9]. Here the 

accommodation energy during Li ion extraction will increase the electrode potential 

(make it more positive, that is, increase the overvoltage). The potential increase during 

the delithiation process ∆Edelithiation can be determined from eq. 3 [9]. 

 

  (3) 

 

where Ede is the delithiation equilibrium potential after consideration of the 

accommodation process, ∆Gelastic-delithiation and ∆Gplastic-delithiation are elastic and plastic 

accommodation energies during delithiation process. Therefore the strain accommodation 

of internal stresses through elastic-plastic deformation consumes energy, which decreases 

the energy available for the phase transformations associated with lithiation-delithiation 

and increases the overvoltages with respect to stress-free material. In other words, the 

energy accommodation during elastic-plastic deformation of the electrode materials 
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decreases the lithiation equilibrium potential and increases the delithiation equilibrium 

potential, both with respect to the equilibrium potential under stress free conditions. 

Continuous cycling of Al anodes in the failure experiments produced an increase in the 

charge-discharge plateau separation. This should be attributed to accumulation of internal 

stresses according to this mechanism. As the stresses accumulate to a point when they 

exceed the mechanical strength of the material, mechanical fracture happens that is 

accompanied by sudden jumps in plateau potentials which decreased the separation (Fig. 

4-3-9). This should relieve internal stresses and reduce the overvoltage and thus the 

plateau separations. Therefore it would be reasonable to assume that the jumps in the 

plateau potential observed in the continuous cycling indicate such mechanical fracturing 

events. Physically, they may correspond to cracking, or total pulverization of a portion of 

the active material. Overall, due to repeated fracturing events, the potential response that 

is observed over time during failure experiments has a serrated appearance (Fig. 4-3-9).  

 

In the liquid half cell environment the entire electroactive area of the anode is directly 

exposed to the bulk electrolyte solution. As a result there is no external mechanical force 

which is being applied to the exposed area of the Al anode. This is an important feature to 

consider for several reasons. Firstly, the growth of the porous structure can progress 

indefinitely in terms of thickness because there is no external force suppressing the 

volume changes associated with its formation (there is no limit in the supply of Al from 

the bulk Al anodes). Secondly the absence of such an external compression force will 

allow less accumulation of internal stress before fracture and thus change the lithiation-

delithiation potentials. Thirdly, the absence of such force may allow cracks that form to 

propagate uncontrollably in the porous structure, as well more heterogeneous dendritic 

growth to occur. In the extreme case this could result in a portion of the porous structure 

becoming separated and lost into the electrolyte.  

 

Moreover, as the intermetallic structure develops and get thicker, transport limitations 

may occur. They are sometimes referred to as lithium trapping in the literature [13-14]. 

Such transport limitations will manifest themselves as additional overvoltages associated 

with concentration gradients inside the LiAl phase and will result in further shifts in the 
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delithiation potentials potential in addition to potential shifts described by eqs. 2 and 3. In 

particular, for bulk Al this was represented in the form of secondary and tertiary 

discharge plateaus that appeared at high current densities after the main discharge 

plateau, and then steadily increased in duration with cycling (Figs. 4-1-12, 4-2-11, 4-3-

11). However the cumulative contribution of these diffusion-limited processes in our 

experiments typically did not exceed 10% (except in Dural), and the effect was only 

severe close to the plateau jump events. Physically the phenomenon of lithium trapping in 

our bulk Al system can arise in two ways. Firstly there may be cases when lithium cannot 

be extracted because its transport is diffusionally hindered and there is insufficient 

concentration gradient or diffusivity (low diffusion coefficient) to get it out. Secondly 

there is lithium that may be present in a portion of the porous structure that has broken 

off during cracking and is therefore rendered inactive for delithiation because it has lost 

electrical contact with the metal support. The latter cause is equivalent to pulverization, 

while the former will be relatively minor if the proper porous nanostructure is produced 

through an optimum combination of materials, protective coatings and conditioning at 

low current densities. 

 

In light of the situation described above we will employ multiple (concurrent) strategies 

to mitigate the mechanical degradation (pulverization) of the porous structure. Most 

importantly there is the consideration of mechanical properties of the bulk anode 

materials, which will be discussed in detail in Ch. 5.2, as well as how these properties 

affect the serrated potential response characteristic of anode failure. Obviously, a stronger 

material will better resist the accumulation of internal stresses and fracture. Secondly, we 

will explore the ways to contain the volume changes and associated stresses by applying 

various coatings and architectures that would act as scaffolds and exert a compressive 

force to contain phase growth and fracture. Such strategies are presented in Ch. 5.3. In 

particular we discuss the advantage of using of mechanically rigid yet elastic solid 

polymer electrolytes as an additional scaffold in solid-state battery prototype architecture. 

We will also highlight the need to use low current densities at the early stages of 

formation of the LiAl nanostructure since low growing rates should produce less stress 

accumulation and therefore more ordered, stable and rigid structure.  



www.manaraa.com

344 

 

5.1.3  References 

 

1. Schroder, K.W.; Dylla, A.G.; Harris, S.J.; Webb, L.J.; Stevenson, K.J., ACS Appl. 

 Mater. Interfaces, 2014, 6, 21510-21524. 

2. Liu, D.X.; Co, A.C., J. Am. Chem. Soc., 2016, 138, 231-238. 

3. Liu, X.H.; Huang, J.Y., Energy Environ. Sci., 2011, 4, 3844. 

4. Zhu, J.; Zhou, J.; Chen, B.; Liu, Z.; Liu, T., J. Solid State Electrochem., 2016, 20, 

 37-46. 

5. Mukhopadhyay, A.; Sheldon, B.W., Progress in Materials Science, 2014, 63,  

 58-116. 

6. Liu, Y.; Hudak, N.S.; Huber, D.L.; Limmer, S.J.; Sullivan, J.P.; Huang, J.Y., 

 Nano Lett. 2011, 11, 4188-4194. 

7. Sethuraman, V.A.; Srinivasan, V., Journal of the Electrochemical Society, 2010, 

 157(11), A1253-A1261. 

8. Sheldon, B.W.; Soni, S.K., Electrochemical and Solid State Letters, 2012, 15(1), 

 A9-A11. 

9. Zhu, Y.; Wang, C., Journal of Power Sources, 2011, 196, 1442-1448. 

10. McAlister A.J., Bulleting of Alloy Phase Diagrams, 1982, 3, 177-183. 

13. Owen, J.R.; Maskell, W.C.; Steele, B.C.H., Solid State Ionics, 1984, 13, 329-334. 

14. Oltean, G.; Tai, C.W.; Edstrom, K.; Nyholm, L., Journal of Power Sources, 2014, 

 269, 266-273. 

 
 

 

 
 
 
 
 
 
 
 



www.manaraa.com

345 

 

5.2 Role of Mechanical Properties of Aluminium Alloy 

 

Before we examine the role of mechanical properties in the lithiation-delithiation of bulk 

Al anodes we clarify some terminology that will be used in this section. Applied stress 

that produces a strain response in a material before the yield point results in elastic 

deformation. This is considered a reversible deformation. Conversely applied stress that 

produces a strain response in a material at or beyond the yield point results in plastic 

deformation. This is considered an irreversible deformation, with severe plastic 

deformation causing the formation and propagation of cracks and eventually fracture. 

Substitutional alloys are the structures in which the alloying atoms or ions substitute the 

ones originally found in atomic positions of the host crystalline lattice. There are also 

interstitial alloys whereby the alloying elements go into interstices, or voids existing 

between atoms or ions in the original crystal. During the process of plastic deformation 

there is movement of mobile dislocations and diffusion of alloying atoms through 

vacancies. When mobile dislocations are relatively free to move during plastic 

deformation and are not obstructed, this produces homogenous plastic deformation in the 

material. No or little internal stress is accumulated in this process. However when there is 

a dynamical interaction of the mobile dislocations and the diffusing solute atoms, or 

dislocations with other dislocations, the dislocations may become immobilized or 

"pinned". This causes what is termed "jerky flow" of dislocations, producing localized 

(inhomogenous) bands of plastic deformation in the material. This phenomenon is 

referred to as the Portevin-LeChatelier (PLC) effect and is visualized in a serrated stress-

strain curve [1-4]. The stress-strain curve has a "serrated" appearance with periodic 

discontinuous drops in stress separated by portions of smooth deformation (Fig. 5-2-1). 
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Figure 5-2-1: Serrated stress-strain curve for a material characteristic of jerky flow 

of mobile dislocations 

 

The onset of the PLC effect starts at a so-called "critical strain" which is the minimum 

strain needed for the onset of the serrations in the stress-strain curve. The critical strain to 

create these serrations will depend on multiple factors [1-4]. In particular these would be 

the host and solute elements, whether the solute is present as a substitutional or interstitial 

alloy in the host, the concentration of the solute element in the host, and whether the 

material has undergone treatment that affects dislocations such as strain-hardening and 

thermal annealing. 

 

Lithiation-delithiation of Al anodes occurs through generation and movement of 

dislocations [5-6]. At low concentrations of Li this occurs in a substitutional solid 

solution of Li in an FCC lattice of Al, referred to as the α-LiAl intermetallic phase [6-7]. 

Diffusion of Li in this solid solution occurs through movement and generation of 

dislocations. Solid solutions of LiAl (α-LiAl) are known to consistently exhibit the PLC 

effect when the Li concentration increases sufficiently to promote some short range 

ordering of Li in the alloy [3], i.e. when the Li concentration increases sufficiently to 

promote localized regions of crystallized β-LiAl intermetallic phase formation [6-8]. 

Therefore this effect implies an interaction between Li solute atoms and dislocations of 
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the Al lattice during the strain response of deformation that occurs in lithiation-

delithiation. Mobile dislocations may become trapped (pinned) both by diffusing Li 

solute atoms (solid solution of α-LiAl) and by the short-range order present in localized 

regions of crystallized β-LiAl formation, as well as other dislocations when the size of β-

crystalline domains become large enough. In fact, trapping of dislocations is the physical 

mechanism behind cold or work hardening of materials. 

 

The Al anodes in this thesis work are bulk materials. Therefore the processing methods 

used to manufacture the material must be considered, because these methods will 

determine the mechanical properties, and the properties will be determined by the 

distribution and mobility of dislocations. There are many processing methods available 

for bulk Al materials which can produce a wide variety of mechanical properties. The 

mechanical properties can be modified through cold-working (strain-hardening) or 

thermal annealing (softening) treatment of the bulk Al material itself. Alternatively the 

properties can be modified by introducing alloying elements in the molten state followed 

by quenching and ageing. Since the mechanical properties determine the distribution and 

mobility of dislocations they will greatly determine the strain response of the bulk Al 

material towards the internal stresses that are produced in lithiation-delithiation. In 

particular this would concern the strain response of the material towards the stresses that 

are produced by formation of an α-LiAl solid solution, and then later crystallization to β-

LiAl with increasing Li concentration. If the mechanical properties of a bulk Al material 

produce jerky flow (PLC effect) during repeated lithiation-delithiation processes this 

would be visualized by a serrated stress-strain curve (Fig. 5-2-1). As described previously 

in Ch. 5.1 the elastic-plastic strain response of the material towards lithiation-delithiation 

stresses will affect the Nernstian equilibrium potentials of the respective processes [9-11], 

because energy that is used to accommodate strain is lost for the purposes of 

insertion/extraction of Li. Therefore a serrated strain response during lithiation-

delithiation should produced a similar response in the respective plateau potentials over 

time. This would be visualized as instantaneous (discontinuous) jumps in plateau 

potentials during galvanic cycling. In addition there could be smaller more localized 

changes of potential within a plateau region. Physically an increased PLC effect should 
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manifest as more severe localized cracking in the porous structure i.e. inhomogenous 

plastic deformation. 

 

In the comparison of Goodfellow Al (GF Al) versus McMaster-Carr (MC Al) we need to 

consider the effect of cold-working (strain hardening) and thermal annealing (softening) 

processing methods applied to these materials during manufacture. Strain-hardening is a 

form of cold-working for Al materials. It both multiplies the number of dislocations in 

the material and "entangles" them relative to the original unworked material [4]. In other 

words there is a dislocation-dislocation interaction which impedes their mobility because 

a significant portion of dislocations are now considered immobile (forest dislocations). 

Plastic deformation occurs through movement of mobile dislocations. Therefore strain-

hardening has the effect of decreasing the relative ease of plastic deformation and thus 

the strain at a given stress. The dislocations in the Al effectively trap each other, 

preventing movement. If strain-hardening impedes the mobility of dislocations within the 

host, and diffusion of Li solute atoms during lithiation occurs through movement of 

dislocations, then the relative degree of lithiation occurring through intermetallic phase 

formation will be lower for GF Al. Therefore, indicators of volume change and degree of 

phase formation (alloying) in the electrochemistry should decrease. In the 4x8 experiment 

of GF Al the initial CV shows a smaller loop size, more gradual slope following lithiation 

onset as well as a decreased overvoltage relative to MC Al (Fig. 4-2-2). Similarly In the 

4x8 galvanic cycles we clearly see a decreased plateau separation for GF Al when 

comparing cycles from both materials at the same cycle number and current density (Fig. 

4-2-3), which can be related to less pronounced changes in volume and the associated 

energy (Eq. 2). 

 

For MC Al the process of thermal annealing decreases the number of dislocations as the 

material progresses towards its equilibrium state through the redistribution of atoms [1]. 

It is also typically characterized by grain growth in which the microstructure starts to 

coarsen resulting in softening of the material. Overall, thermal annealing has the effect of 

increasing the relative ease of plastic deformation. While this processing method 

annihilates a significant portion of dislocations that were present, there remains a 
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relatively higher number of mobile dislocations than in strain-hardened GF Al, and they 

can travel farther due to the coarser grain boundaries. Therefore for lithiation-delithiation 

this should offer a greater capability for the volume change due to intermetallic phase 

formation. As a result the 4x8 experiment of MC Al has an initial CV with larger loop 

size, steeper slope following lithiation onset and increased overvoltage (Fig. 4-2-2). 

Similarly the 4x8 galvanic cycles have a larger plateau separation (Fig. 4-2-3). The 

increased capability for volume change and intermetallic phase formation in MC Al has a 

drawback. It initially decreases the reversibility (coulombic efficiency, CE), likely for 

two main reasons (Fig. 4-2-6). Firstly a larger volume change upon delithiation may 

partially destroy part of the porous structure that was created during lithiation, trapping Li 

inside. In Al nanowires this has been observed as void formation that only occurs after 

the delithiation scan [12]. Secondly larger volume changes in MC Al may cause 

additional destruction of the SEI layer that was present. Since Li that is used for SEI 

formation during lithiation is irreversibly lost the Li that is recovered upon delithiation 

will be less (lower CE). 

 

In the half-cell failure tests of GF Al (GF5) versus MC Al (MC3) we observed that MC 

Al produced a significantly more unstable lithiation-delithiation potential response over 

time as well as severe degradation in CE (Figs. 4-2-7 to 4-2-10). First let us consider the 

effect here of the native surface oxide which was present in MC Al (MC3) but was 

removed in GF Al (GF5) prior to cell assembly and testing. As described in Ch. 5.1 the 

native oxide is initially detrimental for CE, likely because it is irreversibly lithiated to a 

Li-O-Al layer [12], but quickly becomes irrelevant. At the higher current density of 0.5 

mA/cm2 used in half-cell failure tests the oxide should be fully lithiated within a few 

cycles, which helps explain the decreasing CE trend observed very early in MC Al (Fig. 

4-2-10). After that point the CE of MC Al rapidly improves over time similar to GF Al, 

and actually reaches a higher maximum value. The pronounced failure that follows for 

MC Al should be primarily due to the softened mechanical properties. The greater 

capability for volume change and phase formation in MC Al allows for a short time a 

higher CE than in GF Al. However it is these same properties that are ultimately 
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detrimental for the mechanical stability of the porous structure, that has less pronounced 

dislocation trapping and thus is less resistant to fracturing, cracking and ultimate failure. 

 

The cycle sets of both GF Al (GF5) and MC Al (MC3) show discontinuities in lithiation-

delithiation potentials, i.e. plateau potential jumps (Figs. 4-1-8, 4-2-7). The amplitude of 

these discontinuities is larger in MC Al because the potentials shift more drastically over 

time prior to the jumps. Therefore both materials should exhibit serrations in their stress-

strain behaviour (jerky flow, PLC effect) during repeated lithiation-delithiation events at 

a relatively high current density, and this behaviour is more severe in MC Al than GF Al. 

In strain-hardened GF Al the absolute number of dislocations within the material is much 

higher than in MC Al. However a large portion of these dislocations are immobile 

because of dislocation-dislocation interactions [4]. Therefore the relative number of 

mobile dislocations available to interact with Li atoms and become immobilized (pinned) 

by them is less in GF Al. This should decrease the frequency and magnitude of serrations 

in the strain-stress curve, which is what we observe in the charge/discharge potential 

response over time for GF Al (Fig. 4-1-8). The thermal annealing processing that creates 

MC Al will annihilate a significant portion of the dislocations that were present in the 

original Al 1100 material [1]. However the relative number of mobile dislocations in MC 

Al is higher than in GF Al. Together with the coarser grain boundaries (larger grains) 

produced by the annealing method these mobile dislocations are more free to move to 

interact with diffusing Li atoms and become pinned by them. This should increase the 

frequency and magnitude of serrations in the stress-strain curve, which is what we 

observe in the charge/discharge potential response over time for MC Al (Fig. 4-2-7).  

 

Physically the increased serrated yielding response of MC Al (MC3) should be producing 

many localized bands of plastic deformation (cracking) in the porous structure. This is 

observed in the SEM images of MC Al after the half-cell failure test was complete (Fig. 

4-2-13). There are numerous small cracks positioned laterally and vertically between 

portions of the porous structure, which could help to release portions of the porous 

structure into the liquid electrolyte. This cracking behaviour produces the multilayered 

porous structure seen in MC Al. In the SEM of GF Al after the half-cell failure test there 
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is also evidence of localized bands of plastic deformation (PLC effect) (Fig. 4-1-14). This 

is seen in the long cracks of GF Al (Fig. 4-1-14 a), that are considerably wider than any 

cracking observed in MC Al (Fig. 4-2-13 a). However when looking at lower 

magnification the portion of the cycled area that appears free of mechanical degradation 

is significantly larger in GF Al (Fig. 4-1-14 b) than in MC Al (Fig. 4-2-13 b). 

Furthermore there is no cracking in GF Al that causes peeling of portions of the porous 

structure away into the liquid electrolyte and therefore no multilayered structure. Overall 

the comparison of GF Al versus MC Al half-cell failure tests suggests that softened 

mechanical properties in the bulk MC Al produces a more serrated strain response under 

repeated lithiation-delithiation events at a relatively high current density. This strain 

response then manifests itself as increased drifting in lithiation/delithiation potentials 

(overvoltage), increased plateau separation as well as plateau potential jumps due to 

severe plastic deformation of the porous structure. Therefore, softened mechanical 

properties can be considered as detrimental towards the cycle stability and cycle lifetime 

of bulk Al anodes in lithium-ion batteries. Similar tendencies have been demonstrated by 

even softer thin sputtered Al films described in Ch. 4.5. In view of this discussion, it is 

not surprising that numerous attempts in the literature to achieve high performance of Li 

based anode using traditional approaches involving various nanoparticles, nanowires and 

thin films, were unsuccessful. Such objects are just too soft to resist fracturing and 

pulverization. Also, nanosize objects cannot have the same degree of dislocation 

hardening because moving dislocations will be trapped at the grain boundaries and not 

able to accumulate. 

 

In Dural (Al 2024) the mechanical properties are modified instead by introducing Cu and 

Mg as alloying elements in the molten state. During quenching and aging these alloying 

elements will primarily precipitate at the grain boundaries. This process is referred to as 

"precipitation hardening" and the end result is that plastic deformation is significantly 

more difficult to perform relative to any Al 1100 material. First let us consider the results 

of the 4x8 experiment of Dural relative to GF Al and MC Al (Ch. 4.3). Copper is 

considered inert towards lithiation and therefore cannot undergo Li-Cu alloy formation 

like in Li-Al [13]. However the process of Li-Mg alloying can occur at room temperature 
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[13]. With copper being inert towards lithiation and precipitating at the grain boundaries 

of Dural we would expect its presence would result in slower kinetics of the lithiation 

process. This behaviour is seen in the notably larger CV overvoltage and galvanic cycle 

plateau separation of Dural relative to GF Al and MC Al (Figs. 4-3-2 to 4-3-4). Dural 

also features notable diffusion limitations of delithiation (see below). This directly 

decreases the coulombic efficiency of the main discharge plateau (Fig. 4-3-5). Physically 

the detrimental effect of copper is seen in the limited reactivity of the Dural surface after 

the 4x8 experiment from the SEM imaging (Fig. 4-3-13 c-d). Even at low magnification 

there are visible regions in the cycled area with minimal if any coverage by porous 

material. 

 

The presence of precipitates (Cu, Mg) has an influence on the appearance/disappearance 

of serrations in the stress-strain curve of Al materials. Specifically the PLC effect (jerky 

flow) is well documented in very dilute (a few at. %) solid solutions of Mg [2] as well as 

Cu [14] in Al. These effects are ascribed to a strong misfit interaction between Cu and 

Mg solute atoms and mobile dislocations in Al. When Dural undergoes lithiation it is 

now further alloyed, this time with Li. Therefore we would expect the detrimental PLC 

effect to increase because now the mobile dislocations can be pinned by Cu, Mg and Li 

solute atoms. This is revealed in the half-cell failure test of Dural (DU2) which shows the 

first jump in plateau potentials appearing earlier than both GF Al (GF5) and MC Al 

(MC3), with an amplitude that is much larger than GF Al and comparable to MC Al 

(Figs. 4-3-7, 4-3-9). The more pronounced PLC effect around this cycle region of the 

Dural half-cell failure test likely explains the higher coulombic efficiencies of the 

diffusion-limited discharge plateaus (Fig. 4-3-11). As described previously in Ch. 5.1 we 

associate these 'secondary' and 'tertiary' plateaus following the main discharge plateau 

with the phenomenon of 'lithium trapping'. The severe diffusion-limited discharge 

behaviour of Dural in the half-cell failure test is consistent with similar behaviour 

observed in the 4x8 experiment (Figs. 4-3-5, 4-3-6). If Li transport within Dural is 

impaired by dislocation pinning and interactions with Cu + Mg atoms then this 

effectively decreases the amount of Li that can be recovered during delithiation. It is this 
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poor Li transport that directly decreases the CE of the main discharge plateau for Dural 

under these half-cell failure conditions relative to GF Al and MC Al (Fig. 4-3-10).  

 

Given the relatively stronger PLC effect present early in Dural we expected that 

additional plateau potential jumps would soon follow in higher frequency and greater 

amplitude than GF Al (GF5) and also possibly MC Al (MC3). However no abrupt change 

in potentials or CE is observed until approaching the 250th cycle (Figs. 4-3-7, 4-3-9, 4-3-

10). This region of cycling stability implies that no further significant plastic deformation 

(homogenous or inhomogenous) occurred between the first plateau jump and much later 

in the cycling of Dural. The reason may be the improved mechanical toughness of Dural 

itself which makes fracture due to plastic deformation considerably more difficult than Al 

1100 materials. This assertion is supported by the SEM imaging of Dural which shows a 

fully reactive highly porous surface that is otherwise relatively intact (Fig. 4-3-14 d-e) 

compared to the cycled morphologies of GF Al (Fig. 4-1-14) and MC Al (Fig. 4-2-13). 

Even considering this region of mechanical stability in the cycling of Dural the CE still 

remained poor below 60% (Fig. 4-3-10). As mentioned this poor CE was primarily due to 

more diffusion-limited discharge behaviour because of slower kinetics and diffusivity due 

to the presence of alloying elements. Overall we can conclude that the improved 

mechanical toughness of Dural results in significantly decreased plastic deformation 

(cracking, fracture, etc.) in response to the internal stresses of lithiation-delithiation. This 

offers a relatively more stable charging/discharging response relative to GF Al and MC 

Al when cycling continuously at a high current density. However the alloying elements 

(Cu and Mg) that are responsible for this mechanical stability simply present too many 

disadvantages. Specifically, these drawbacks are poorer lithiation-delithiation kinetics, 

diffusivity and reversibility, which makes Dural an unsuitable anode material for Li ion 

batteries relative to strain-hardened bulk Al 1100 materials such as GF Al. 
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5.3 Role of CNx and SPE Protective Coatings on Aluminium 

 

In Ch. 5.1 we discussed that one of the possible ways to contain the volume changes and 

associated stresses is by applying various coatings that would act as scaffolds and exert a 

compressive force to contain phase growth and fracture. In this section, we discuss the 

use of vacuum deposited carbon nitride (CNx) as well as solid polymer electrolyte (SPE) 

for this purpose. But let us first consider how the deposition of CNx film can modify the 

bulk Al surface. The compositing of aluminium with carbon is ideally performed through 

methods that allow for Al-C hybridization at the nanoscale. This has been performed 

through gas-phased chemical-vapor deposition (CVD) methods [3], but more recently a 

facile synthesis method has emerged involving ultrasonication and heat treatment of Al 

powders and carbon precursors [5]. Methods such as these that allow for nanoscale 

hybridization are believed to result in formation of Al carbides at the nanoscale interface 

of Al and sp2 (graphitic) carbon. This interfacial reactivity improves both conductivity 

and stability (capacity retention) of the composite anode during the repeated volume 

changes of continuous cycling. Nitrogen doping of sp2 carbon composited with Si and Sn 

nanostructured anodes has been shown to offer two benefits [4]. Firstly there is higher 

theoretical capacity relative to anodes composited with only graphitic materials because 

of the higher electronegativity of nitrogen relative to carbon. Specifically some N-

containing functional groups have a strong interaction with the metal and metal oxide, 

possibly through the formation of unique interfacial species, but this has not been 100% 

proven. This behaviour improves adhesion between the active material (metal and metal 

oxide) and the buffering component (carbon). Secondly significant levels of N-doping 

can offer a high proportion of pyridinic and pyrrolic functional groups, which may 

improve lithium penetration into the carbon structure. 

 

Our radiofrequency magnetron sputtering (RFMS) method of CNx deposition on Al can 

be considered as a physical vapor deposition (PVD) method of production of nitrogen-

doped carbon plasma species. However, our substrate is bulk Al metal instead of 

nanostructured Al such as Al nanoparticles or nanowires that are used in the literature. 

Therefore RFMS deposition limits us only to planar interfacial reactivity at the Al 
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surface, but at the surface there should still be nanoscale hybridization of Al and N/C 

containing species. This hybridization should at least provide a planar distribution of Al 

carbide and nitride species. In TOF-SIMS depth profiling of uncycled areas of non-

annealed and annealed Al-CNx we observed intensity maxima of AlC- and AlN- ions at 

the film-metal interface, suggesting the formation of Al carbides and/or nitrides (Figs. 4-

6-7 b, 4-6-8 b). We also observed interfacial maxima of AlOx
- ions in both samples. 

These oxide ion maxima indicate that the surface oxide that was re-grown on GF Al 

initially after substrate preparation was not reduced by the process of CNx film 

deposition. This interfacial oxide presence may not be detrimental for 

lithiation/delithiation due to the improved binding of N-containing functional groups 

mentioned above [4]. We expect this beneficial binding effect would be significant given 

the high nitrogen content of the plasma (75% N2) which produces significant 

incorporation of N-containing functional groups in amorphous sp2 carbon. Overall our 

TOF-SIMS depth profiling results suggest that for our Al-CNx anode system the CNx 

layer should to some extent alter the Al electrode surface, through planar interfacial 

reactivity during the sputter deposition event with the highly reactive bombarding species 

that are formed in the plasma. This reactivity would then promote some CNx film 

adhesion to the Al substrate during the volumetric changes of intermetallic alloy 

formation and dissolution. 

 

The compositing of carbon (graphite, nanotubes, etc.) with metal-alloying anode 

materials such as Si and Sn generally serves two purposes [1-5]. Firstly the low 

volumetric expansion of graphitic carbon offers a buffering component against cracking 

and pulverization of the metal-alloying active material upon intermetallic phase 

formation. Additionally the carbon content improves conductivity through continuous 

electrical contact between Si or Sn particles while preventing their aggregation in the 

nanoscale architecture, and also facilitating ion transport to these particles. While the 

second consideration obviously does not apply to our situation (bulk Al anodes have 

higher conductivity than any carbon material), the first one is relevant to containing the 

volume change. 
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When considering the electrochemistry of lithiation-delithiation in the coated versus 

uncoated bulk Al anodes of this thesis work there are multiple possible effects of the CNx 

layer. Firstly the CNx layer may alter the electrical and ionic conductivity of the anode. 

These effects were well documented in Ch. 4.4. Secondly the CNx layer itself may be 

lithiated and therefore contribute to the capacity of the anode system. This is unlikely to 

be true for two reasons, beginning with the electrochemistry. In the initial CVs of Al-

CNx and Dural-CNx anodes we did not observe additional reduction peaks between the 

lithiation onset potential for intermetallic alloy formation and the left vertex (Figs. 4-4-2, 

4-4-13). Similarly we did not observe additional oxidation peaks outside the broad peak 

around +1V characteristic of intermetallic alloy dissolution. In the 4x8 galvanic cycles of 

Al-CNx and Dural-CNx anodes we also did not observe any additional lithiation-

delithiation processes that may uniquely arise from just CNx itself (Figs. 4-4-3 to 4-4-5,  

4-4-14 to 4-4-16). The half-cell failure experiments of these two types of coated anodes 

did initially reveal pronounced double discharge plateaus in the first one or two cycles 

(Fig. 4-4-8, 4-4-19). However even in these experiments the discharge behaviour quickly 

transitioned to a single plateau by the second or third cycle, and remained so for the rest 

of the set.  

 

The most conclusive evidence can be found in the TOF-SIMS depth profiling results of 

cycled non-annealed Al-CNx in Ch. 4.6. In particular, profile regions with intensity 

maxima of CNx containing ions corresponding to residual CNx film (Fig. 4-6-9 c,e,f), 

simultaneously showed a minima of Li- ions (Fig. 4-6-9 a). Overall we conclude that 

lithiation-delithiation of CNx itself is relatively insignificant in this work. The CNx film 

instead serves two purposes in our work. Firstly it acts as an ionic conducting pathway to 

the Al core. Secondly and more importantly it acts as a scaffold to contain the volume 

changes of intermetallic LiAl phase formation and dissolution, and therefore to control 

growth of the porous intermetallic structure that are responsible for the charge-discharge 

processes in Al anodes. 

 

In 4x8 experiments of both non-annealed and annealed Al-CNx the initial CVs show 

smaller nucleation loops and a more gradual slope of lithiation below the onset potential 
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(Fig. 4-4-2). Both of these features suggest containment of volume changes by CNx 

associated with formation of the porous LiAl structure. In Si and Sn anodes carbon 

coatings have been shown to buffer against volume change by significantly reducing the 

density of mobile dislocations at the medusa zone during nucleation and growth of 

intermetallic phases [2]. This is important because lithiation-delithiation of metal-

alloying electrodes such as Al occurs through movement and generation of dislocations 

within the host matrix [6]. Therefore we expect a similar mechanism may occur in our 

Al-CNx system. Surface analysis of the non-annealed Al-CNx anode revealed that the 

CNx coating cracks and becomes separated from the underlying bulk Al core, with the 

remnants sitting instead on top of the porous structure (Fig. 4-4-24 a). Conversely in the 

annealed Al-CNx anode the remaining CNx is located close to the film-metal interface, 

buried beneath the porous structure (Fig. 4-4-24 c). This suggests that there is likely 

increased film-metal interfacial reactivity during the annealing process.  In combination 

with the stress relief within the annealed film, this benefit should increase CNx adhesion 

and stability during lithiation-delithiation of Al. Therefore, the annealed CNx film should 

be more effective in controlling growth of the porous structure. The effect of CNx coated 

on Dural is quite different from the situation described above for CNx coatings on GF Al. 

In the initial CV of the 4x8 experiments we only observed minor differences in the size of 

nucleation loops relative to Dural (Fig. 4-4-13). This suggests that the containment of 

volume changes of intermetallic phase formation by CNx is relatively minor with a Dural 

substrate compared to GF Al. The volume change capability for Dural-CNx could already 

be significantly constrained by the hardness of Dural itself as described in Ch. 5.2. 

  

In the half-cell failure test we expected the presence of the CNx layer would decrease the 

accumulation of internal stresses in the bulk Al anode, as the surface sites are gradually 

saturated and the porous structure continues to grow with continuous cycling. This would 

then decrease the strain response in terms of formation and propagation of cracks in the 

porous structure, leading to a more stable charge/discharge response and CE trend 

relative to bare GF Al itself. During early cycling of Al-CNx (AC3) this indeed appeared 

to be true with a higher maximum CE observed (Fig. 4-4-10), but the effect was transient 

and largely disappeared after 40-50 cycles, followed by large plateau jumps (Fig. 4-4-9) 
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and decrease in CE. The poor performance was likely due to the CNx coating being 

rapidly destroyed as was revealed by surface analysis afterwards (Fig. 4-4-25 e-f). While 

the CNx film appeared severely degraded the underlying porous structure actually 

showed significantly less systematic cracking (Fig. 4-4-25 d-e) relative to the half-cell 

failure test of GF Al (Fig. 4-4-25 a-b). Therefore the CNx film to some degree was 

effective in minimizing the lithiation-delithiation induced strain. We did not test annealed 

Al-CNx anodes under half-cell failure conditions. Considering the improved adhesion 

and stability observed in the SEM images from the 4x8 experiment (Fig. 4-4-24 c) we 

would expect less degradation of CE and a more stable charge/discharge response relative 

to non-annealed Al-CNx. 

 

Ultimately, trying to achieve any prolonged benefit from using carbon coatings such as 

CNx on bulk Al anodes is likely futile in a liquid half-cell environment. Here the CNx 

exposed to the liquid electrolyte rapidly cracks into pieces within a few cycles. Then 

those remnants can separate from the anode and be lost into the electrolyte, similar to 

portions of the porous intermetallic structure during the stress relief events of systematic 

cracking in the half-cell failure tests. When this occurs, the CNx benefits of constraining 

the volume changes of intermetallic phase formation are lost, as well as any benefits 

towards the conductivity or reversibility of the anode system. To fully realize the benefits 

of CNx coatings on bulk Al anodes requires the solid-state battery prototype design in 

tandem with a mechanically rigid solid polymer electrolyte, which would act as a second 

scaffold to both keep the CNx from separation and control the volume change by exerting 

external compression force. 

 

In the solid-state battery prototype there are multiple mechanical constraints present (Fig. 

3-1). Firstly, there is the solid polymer electrolyte (SPE) which acts as a mechanically 

strong yet elastic scaffold. Secondly, the total volume of the cell is kept constant by the 

cell design. Therefore there is a limitation on how much porous structure can be formed 

at the Al anode. Additionally the large relief of internal stresses within the anode through 

systematic cracking and release of active materials should not be possible in the solid-

state battery prototype. The dramatic plateau potential jump events observed in the half-
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cell failure tests (Fig. 4-3-9) were not observed in the battery tests. In the battery test 

failures at higher current densities the charge/discharge plateau drifting and IR drop 

simply kept increasing until there was a complete loss of coulombic efficiency (Figs. 4-7-

4, 4-7-5, 4-7-12, 4-7-13, 4-7-16, 4-7-17). This indicates that the battery architecture was 

successful in preventing the pulverization and detachment of the active material. The 

eventual failure that we did observe with battery tests was likely due to uncontrolled 

heterogeneous and dendritic growth of the porous structure between the strands of SPE at 

the highest current densities. This uncontrolled growth could not only damage the SPE 

but also allow direct contact with cathodic materials leading to the formation of a short 

circuit in the cell. In the surface analysis of battery anodes cycled with constant 

charge/discharge times at elevated current densities (samples BAT1 to BAT4 in Ch. 4.7) 

we consistently observed overlaying features on the porous anode morphology, 

characteristic of dendritic growth of the porous structure and damage of SPE/cathodic 

components (Figs. 4-7-28 a-c).  

 

The mechanical constraints present in the solid-state battery cell prototype are also 

beneficial for the CNx film on the bulk Al anode. Even if the CNx film significantly 

cracks during anode charge/discharge the remaining pieces will still be localized near the 

anode instead of being lost into a liquid electrolyte as in the half-cell. Therefore the CNx 

can act as a secondary scaffold in addition to the SPE layer. The battery test with very 

limited cycling of the Al-CNx anode (BAT6) suggests that CNx constrains the phase 

formation during the initial stages (Fig. 4-7-29 a). However if growth of the porous 

structure is not carefully controlled during battery conditioning due to the use of constant 

charge/discharge times then the porous structure rapidly breaks through and grows over 

any remaining CNx. In this case the CNx rapidly becomes buried underneath the thick 

porous structure. Therefore its effectiveness of acting as an additional scaffold is quickly 

lost, and at that point the constraining of continued phase growth (porous structure) solely 

relies on the SPE layer. This situation is likely what occurred in the battery test with non-

annealed 75% N2 Al-CNx anode (BAT2). The performance was improved over the test 

with bare GF Al anode (BAT1), producing a stable charge/discharge response (Fig. 4-7-

9) and good coulombic efficiency (Fig. 4-7-8) at a higher current density where BAT1 
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rapidly failed (Figs. 4-7-4, 4-7-5). However the porous structure growth still got out of 

control at the highest current density, with the CNx becoming buried and evidence still 

appearing for damage of SPE and cathodic materials (Fig. 4-7-28 b). Overall the results 

are a vast improvement but at the same time they highlight the need to limit the current 

density used to electroform the intermetallic structure. If the charge/discharge times 

exceeds the capacity of the intermetallic structure formed at low current densities, 

uncontrolled growth at high current densities follows that results in rapid cell failure.  

 

Therefore, in the final battery experiment (BAT5) we first used the already established 

approach of conditioning at lower current densities with a high number of cycles. This 

allowed for equilibrium growth of the nanostructure that was controlled and uniform. 

Then we proportionally limited the charge/discharge times so that not to exceed the 

capacity of the formed nanostructure and to avoid the continued growth at higher current 

densities. The result was a honeycomb morphology in the nanostructure (Fig. 4-7-28 e). 

Here the volume change was contained within the pores, effectively decreasing the 

accumulation of strain on the anode side and keeping the overall anode dimensions 

constant. There was no destruction of the SPE layer, with large portions of intact SPE 

instead remaining on the anode after separation from the cell assembly (Figs. 4-7-27 e, 4-

7-28 g). We were even able to detect some areas on the anode surface that still contained 

relatively intact CNx film (Fig. 4-7-28 f). This CNx could then maintain its effectiveness 

as an additional scaffold while improving the electrical/ionic conductivity for lithiation-

delithiation. The combined battery conditioning approach in BAT5 also offered another 

benefit. It eliminated the presence of diffusion-limited discharge plateaus and related 

processes (Fig. 4-7-23), that plagued the battery performance with Al-CNx anodes (e.g. 

Fig. 4-7-10 b), in which the nanostructure growth was not controlled at higher current 

densities. Therefore this conditioning approach also decreased the effect of lithium 

trapping likely due to the shorter diffusion length in the nanopores of the honeycomb, 

resulting in greatly improved coulombic efficiency (Fig. 4-7-20). 
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Chapter 6 

 

6 Conclusions and Future Work 

 

Overall, in this work, we were able to demonstrate that the problems that have been 

plaguing Al anodes and precluding their use in Li ion batteries despite obvious 

advantages do not appear to be insurmountable. We were able to prepare battery 

prototypes with Al anodes, LiFePO4 cathodes and solid polymer electrolyte that showed 

sustained performance for more than 400 cycles over wide range of charge-discharge 

rates without any failure or capacity fading. The key advances that allowed us to achieve 

this goal can be formulated as following: 

 

1. We were the first who noted and studied in detail the effect of the mechanical 

properties of the Al material on the formation of the LiAl intermetallic phase and the 

ensuing performance of the anode. 

2. We were the first to suggest the use of electrochemical approach to formation of the 

LiAl nanostructure directly on the bulk anode surface, as opposed to usual approaches 

tested in the literature that involved various kinds of nanoparticles, nanowires, as well as 

thin evaporated or sputtered films.  

3. We were the first to suggest using CNx and/or SPE scaffold to ensure high stability 

and activity of the LiAl intermetallic phase formed. A unique honeycomb structure was 

discovered that showed very high performance in a wide range of current densities. 

4. Yet another key was the use of solid polymer electrolyte as additional scaffold 

ensuring excellent performance of the battery prototypes.  

 

 

 

 

 

 



www.manaraa.com

364 

 

Further work will concentrate on two directions: 

 

(1) Further improvement of the procedures to grow the nanostructure, optimization of the 

growth conditions, etc. The goal is to be able to grow even thicker layers to improve the 

capacity. One concern here would be the possible re-appearance of the diffusion 

limitations. The failure mechanism also needs to be investigated in more detail.  

 

(2) Studies and optimization of the cell design and in particular the properties of the solid 

polymer electrolyte. A parallel project in our group has been underway in our group and 

we were able, using different SPE formulation, to achieve even better performance than 

was demonstrated in this work. This work will be continued. 
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